§ 10. История открытия клетки. Создание клеточной теории
Биология, 10 класс (Лисов, 2014)
[ Содержание ]
Все живые организмы состоят из клеток. Некоторые — всего лишь из одной клетки (многие бактерии и протисты), другие являются многоклеточными.
Клетка — элементарная структурная и функциональная единица организма, обладающая всеми основными признаками живого.
Клетки способны размножаться, расти, обмениваться веществами и энергией с окружающей средой, реагировать на изменения, происходящие в этой среде. В каждой клетке живого организма содержится наследственный материал, в котором заключена информация обо всех признаках и свойствах данного организма. Для того чтобы понять, как существует и работает живой организм, необходимо знать, как организованы и функционируют клетки. Многие процессы, присущие организму в целом, протекают в каждой его клетке (например, синтез органических веществ, дыхание и др.).
Изучением строения клетки и принципов ее жизнедеятельности занимается цитология (от греч. китос — клетка, ячейка, логос — учение, наука).
История открытия клетки. Большинство клеток имеют очень маленькие размеры, поэтому их нельзя рассмотреть невооруженным глазом. Сегодня известно, что диаметр большинства клеток не превышает 20—ЮОмкм, а у шаровидных бактерий — 1,5 мкм. Поэтому открытие клетки стало возможным только после изобретения увеличительного прибора — микроскопа. Это произошло в конце XVI — начале XVII в. Однако только через полвека, в 1665 г.,
англичанин Р. Гук применил микроскоп для исследования живых организмов. Гук изучил под микроскопом тонкий срез пробки и увидел ее ячеистое строение, подобное пчелиным сотам. Эти ячейки Гук и назвал клетками. Вскоре клеточное строение растений подтвердили итальянский биолог и врач М. Мальпиги и английский ботаник Н. Грю. Их внимание привлекли форма клеток и строение их оболочек. В результате возникло представление о клетках как о «мешочках», или «пузырьках», наполненных «питательным соком».
Значительный вклад в изучение клетки внес голландский микроскопист А. в а и Левенгук, открывший одноклеточные организмы — инфузории, амебы, бактерии. Он также впервые наблюдал клетки животных — эритроциты и сперматозоиды.
В начале XIX в. были предприняты попытки изучения внутреннего содержимого клеток. В 1825 г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. Он также ввел понятие «протоплазма» (от греч. протос — первый, плазма —
оформленный), которое соответствует сегодняшнему понятию цитоплазмы. В 1831г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833 г. он пришел к выводу, что ядро является обязательной час
тью растительной клетки. Таким образом, в это время меняется представление о строении клеток: главным стали считать не клеточную оболочку, а внутреннее содержимое.
Клеточная теория. В 1838 г. была опубликована работа немецкого ботаника М. Шлейдена, в которой он высказал идею о том, что клетка является основной структурной единицей растений. Однако честь создания клеточной теории принадлежит немецкому зоологу и физиологу Т. Шванну. Основываясь на работе М. Шлейдена и других исследователей, Шванн в 1839 г. опубликовал книгу «Микроскопические исследования о соответствии в структуре и росте животных и растений», в которой рассматривал клетку как универсальный структурный компонент животных и растений.
Шванн сделал ряд обобщений, которые впоследствии назвали клеточной теорией. Он считал, что все живые существа состоят из клеток, которые у растений и животных имеют сходное строение.
В настоящее время клеточная теория включает следующие основные положения.
В 1872 г. профессор Дерптского университета (ныне это Тартуский университет, Эстония) Э. Руссов, а в 1874 г. молодой русский ботаник И. Д. Чистяков впервые наблюдали деление клетки. Позднее немецкий ученый В. Флемминг детально описал стадии деления клетки, а О. Гер тв и г и Э. С тр ас бур г е р независимо друг от друга пришли к выводу, что информация о наследственных признаках клетки заключена в ядре. Так, работами многих исследователей была подтверждена и дополнена клеточная теория, основу которой заложил Т. Шванн.
Т. Шванн, как и М. Шлейден, ошибочно полагал, что клетки в организме возникают из неклеточного вещества. Поэтому очень важным дополнением к клеточной теории стал принцип немецкого биолога Р. Вирхова: «Каждая клетка — от клетки» (1858).
1. Клетка — элементарная структурная и функциональная единица живых организмов, которая обладает всеми признаками и свойствами живого.
2. Клетки всех организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности.
3. Клетки образуются путем деления исходной материнской клетки.
4. В многоклеточном организме клетки специализируются по функциям и образуют ткани. Из тканей построены органы и системы органов.
Клеточная теория — одно из важнейших обобщений биологии. Ее создание стало значительным событием в естествознании. Клеточная теория оказала существенное влияние на развитие биологии и послужила фундаментом для дальнейшего развития многих биологических дисциплин — эмбриологии, гистологии, физиологии и др.
Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за 170 лет были получены новые сведения о структуре и жизнедеятельности клетки.
1. Кому принадлежит открытие клетки? Кто является автором и основоположником клеточной теории? Кто дополнил клеточную теорию принципом: «Каждая клетка — от клетки»?
Р. Вирхов, Р. Броун, Р. Гук, Т. Шванн, А. ван Левенгук.
2. Какие ученые внесли значительный вклад в развитие представлений о клетке? Назовите заслуги каждого из них.
3. Сформулируйте основные положения клеточной теории. Какой вклад внесла клеточная теория в развитие естественнонаучной картины мира?
4. Используя знания, полученные при изучении биологии в 6—9-м классах, на примерах докажите справедливость четвертого положения клеточной теории.
5. До 1830-х гг. было распространено мнение о том, что клетки — это «мешочки» с питательным соком, при этом главной частью клетки считалась ее оболочка. Чем могло быть обусловлено такое представление о клетках? Какие открытия способствовали изменению представлений о строении и функционировании клеток?
6. Докажите, что именно клетка является элементарной структурно-функциональной единицей живых организмов.
7. Размеры большинства растительных и животных клеток составляют 20—100 мкм, т. е. клетки являются довольно мелкими структурами. Чем обусловлены микроскопические размеры клеток? Объясните, почему растения и животные состоят не из одной (или нескольких) огромных клеток, а из множества мелких.
- § 1. Содержание химических элементов в организме. Макро- и микроэлементы
- § 2. Химические соединения в живых организмах. Неорганические вещества
- § 3. Органические вещества. Аминокислоты. Белки
- § 4. Свойства и функции белков
- § 5. Углеводы
- § 6. Липиды
- § 7. Нуклеиновые кислоты
- § 8. АТФ
- § 9. Биологически активные вещества
- § 10. История открытия клетки. Создание клеточной теории
- § 11. Методы изучения клетки. Общий план строения клетки
- § 12. Цитоплазматическая мембрана
- § 13. Гиалоплазма. Цитоскелет
- § 14. Клеточный центр. Рибосомы
- § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
- § 16. Вакуоли
- § 17. Митохондрии. Пластиды
- § 18. Ядро
- § 19. Особенности строения клеток прокариот
- § 20. Особенности строения клеток эукариот
- § 21. Клеточный цикл
- § 22. Простое бинарное деление. Митоз. Амитоз
- § 23. Мейоз и его биологическое значение
- § 24. Общая характеристика обмена веществ и преобразование энергии
- § 25. Клеточное дыхание
- § 26. Брожение
- § 27. Фотосинтез
- § 28. Хранение наследственной информации
- § 29. Реализация наследственной информации
- § 30. Структурная организация живых организмов
- § 31. Регуляция жизненных функций организма
- § 32. Общая неспецифическая защита организма
- § 33. Специфическая иммунная защита организма
- § 34. Типы размножения организмов. Бесполое размножение
- § 35. Половое размножение. Образование половых клеток
- § 36. Оплодотворение
- § 37. Онтогенез. Эмбриональное развитие животных
- § 38. Постэмбриональное развитие животных
- § 39. Онтогенез человека
- § 40. Закономерности наследования признаков, установленные Г Менделем. Моногибридное скрещивание. Первый и второй законы Менделя
- § 41. Цитологические основы наследования признаков при моногибридном скрещивании
- § 42. Взаимодействие аллельных генов. Множественный аллелизм
- § 43. Дигибридное скрещивание. Третий закон Менделя
- § 44. Сцепленное наследование. Хромосомная теория наследственности
- § 45. Генетика пола
- § 46. Изменчивость организмов, ее типы. Модификационная изменчивость
- § 47. Генотипическая изменчивость
- § 48. Особенности наследственности и изменчивости человека
- § 49. Наследственные болезни человека
- § 50. Селекция, ее задачи и основные направления
- § 51. Методы и достижения селекции
- § 52. Основные направления биотехнологии
- § 53. Успехи и достижения генетической инженерии
- Словарь основных терминов и понятий
Глава 1. Химические компоненты живых организмов
Глава 2. Клетка — структурная и функциональная единица живых организмов
Глава 3. Обмен веществ и преобразование энергии в организме
Глава 4. Структурная организация и регуляция функций в живых организмах
Глава 5. Размножение и индивидуальное развитие организмов
Глава 6. Наследственность и изменчивость организмов
Глава 7. Селекция и биотехнология