- Презентации
- Презентация по математике на тему: Отрицательные числа (2 класс)
Презентация по математике на тему: Отрицательные числа (2 класс)
Автор публикации: Юдина С.C.
Дата публикации: 22.08.2016
Краткое описание:
1
Презентация на тему «Отрицательные числа»
2
Математика – виват! Слава, слава, слава! Не поют ей серенад, Не кричат ей браво. Жили-были 2 числа, Жили, не тужили. Один – минус, другой – плюс, Весело дружили. Знаки разные во всем, Но поставить можно, Чтоб сложилося число, Которое быть должно. Плюс на плюс – получим плюс, Плюс на минус – будет минус. Ну а если (-20) прибавим (-8), То в итоге мы получим число (-28).
0
Благодаря этой рекламе сайт может продолжать свое существование, спасибо за просмотр.
3
Что такое отрицательные числа? Отрицательное число Отрица́тельное число́ — элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел.
4
Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате расширения получается множество (кольцо) целых чисел, состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля. Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.
5
Историческая справка История говорит о том, что люди долго не могли привыкнуть к отрицательным числам. Отрицательные числа казались им непонятными, ими не пользовались, просто не видели в них смысла. Положительные числа трактовали как «прибыль», а отрицательные – как «долг», «убыток». В Древнем Египте, Вавилоне и Древней Греции не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или признавались как промежуточный этап, полезный для вычисления окончательного, положительного результата. Но знаков + или – в древности не было ни для чисел, ни для действий. Правда, умножение и деление для отрицательных чисел тогда ещё не были определены.
6
Свойства отрицательных чисел Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху. Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности. При умножении целых чисел действует правило знаков: произведение чисел с разными знаками отрицательно, с одинаковыми — положительно. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 <, 5 на -2, мы получаем: -6 >, −10. При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно).
7
Основные правила Правило 1. Сумма двух отрицательных чисел есть число отрицательное, равное сумме модулей этих чисел. Пример - Сумма чисел (-3) и (-8) равно минус 11. Правило 2. Произведение двух чисел с разными знаками есть отрицательное число, модуль которого равен произведению модулей сомножителей. Пример - Произведение минус трех и пяти равно минус пятнадцати, потому что при умножении двух чисел с разными знаками получается отрицательное число, а его модуль равен произведению модулей сомножителей , то есть трех и пяти.
8
Модуль отрицательного числа Расстояние от точки А(а) до начала отсчета, т.е. до точки О(о), называют модулем числа а и обозначают /а/ Модуль отрицательного числа равен числу, ему противоположному. Модуль, ничего не делая с положительными числами и нулем, отнимает у отрицательных чисел знак минус. Модуль обозначается вертикальными черточками, которые пишутся с двух сторон от числа. Например /-3/ = 3, /-2,3/ = 2,3 , /-526/7/ = 526/7. Из двух отрицательных чисел больше то, модуль которого меньше и, меньше то, модуль которого больше. (По этому поводу обычно шутят, что у отрицательных чисел все не как у людей, наоборот)
9
Вывод Отрицательные числа в наши дни вещь обыденная: их используют, например, для того, чтобы представить температуру ниже нуля. Поэтому кажется удивительным, что еще несколько столетий назад какой-либо конкретной интерпретации отрицательных чисел не было, а возникающие по ходу вычислений отрицательные числа назывались «воображаемыми». Отрицательные числа нужны не только при измерении температуры. Например, если предприятие получило доход на 1 млн.руб., или, наоборот, потерпело убытки на 1 млн.руб., как это отразить в финансовых документах? В первом случае записывают 1000 000 руб. или + 1000000 руб. А во втором, соответственно, (- 1 000 000 руб.).
10