- Презентации
- Презентация по математике на темукомбинаторика (9 класс)
Презентация по математике на темукомбинаторика (9 класс)
Автор публикации: Сатцаева З.Я.
Дата публикации: 27.10.2016
Краткое описание:
1
Элементы комбинаторики 9 класс
2
Не нужно нам владеть клинком, Не ищем славы громкой. Тот побеждает, кто знаком С искусством мыслить тонким Уордсворд
0
Благодаря этой рекламе сайт может продолжать свое существование, спасибо за просмотр.
3
Обобщающий урок по теме «Элементы комбинаторики»
4
Цель урока: Систематизировать изученный материал, Развивать математическое мышление.
5
I. Фронтальный опрос Ход урока
6
Вопрос 1 : Как обозначается произведение чисел от 1 до n? Ответ: Произведение всех натуральных чисел от 1 до n обозначается n! (n! =1 · 2 · 3…n)
7
Вопрос 2 : Что называется размещением? По какой формуле вычисляется размещение? Ответ: Размещением из n объектов по k называют любой выбор к объектов, взятых в определенном порядке из n объектов. Число размещений из n объектов по k обозначают и вычисляют по формуле:
8
Решите задачу Учащиеся 9 класса изучают 10 предметов. Сколькими способами можно составить расписание уроков на один день так, чтобы было 6 различных уроков? Решение: A6 10= 10 · 9 · 8 · 7 · 6 · 5=151.200 Ответ: 151.200
9
Вопрос 3 : Что называется перестановками? Как обозначаются перестановки? По какой формуле вычисляются перестановки? Ответ: Размещения из n э лементов по n называются перестановками. Обозначение: P n Ф ормула для вычисления перестановок: P n = A6 10 =n ·(n -1) · (n-2) · … · 3 · 2 · 1=n!
10
Решите задачу: Сколькими способами могут сесть в автомобиль 5 человек, каждый из которых может быть водителем? Решение: P5 = A55 = 5! = 1 · 2 · 3 · 4 · 5 = 120
11
Вопрос 4. Что называется сочетаниями? Как обозначаются сочетания и по какой формуле производятся вычисления? Ответ: Сочетаниями из n объектов по k называют любой выбор k объектов, взятых из n объектов. Обозначение: Формула для вычисления сочетаний:
12
Решите задачу В классе 25 учеников. Сколькими способами можно из них выбрать 4 учащихся для дежурства? Решение: Ответ:12650
13
II. Решение задач в группах с последующим обсуждением.
14
1.Вычислить: а) 3! б)5! 2.В конкурсе участвуют 20 человек. Сколькими способами можно присудить первую, вторую и третью премии? Решение: а) 3! = 1 · 2 · 3 =6 б) 5! = 1 · 2 · 3 · 4 · 5 = 120 Решение: A3 20=20 · 19 · 18=6840
15
4. Сколькими способами можно составить трехцветный полосатый флаг, если имеются ткани 6 цветов? 3. Сколько перестановок можно получить из букв, составляющих слово «апельсин». Решение: P n=5!=1 · 2 · 3 · 4 · 5=120 Решение:
16
III. Подведение итогов урока
17
Устные упражнения: 1. Делится ли число 30! на: а) 90 б) 92 в) 94 г) 96 ? 2. Найти значение выражения: а) б) в) 3. Что больше: 6! · 5 или 5! · 6
18
Задачи для домашней зачетной работы по теме «Элементы комбинаторики» 1 группа – «слабые» 2 группа – «средние» 3 группа – «сильные»
19
1–я группа На тренировке занимаются 12 баскетболистов. Сколько может быть образовано тренером различных стартовых пятерок? Сколько разных слов можно составить из слова «комбинаторика»? Для составления букета из девяти цветов в магазине имеются розы, гвоздики, хризантемы и пионы. Сколькими способами можно составить из этих цветов букет? Сколько существует четырехзначных номеров, не содержащих цифр 0, 5, 8?
20
2-я группа Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4 и 5 при условии, что ни одна цифра не повторится? Сколько чисел меньше миллиона можно записать при помощи цифр 8 и 9? В магазине имеются в продаже яблоки, апельсины, груши и мандарины. Сколькими способами можно образовать набор из 12 фруктов?
21
3-я группа Во скольких девятизначных числах все цифры различны? Между четырьмя игроками в домино поровну распределяется 28 костей. Сколькими способами могут распределяться кости домино( очередность выбора костей не влияет на результат). У ювелира есть пять изумрудов. Сколькими способами он может сделать браслет, включив в него два изумруда, три алмаза и два топаза?
22
Ответы и решения. 1-я группа - - - -
23
Ответы и решения. 2-я группа
24
Ответы и решения. 3-я группа * * 1. 2. 9 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 = 3265920 способами, второй игрок способов, три
25
Контрольная работа по теме: «Элементы комбинаторики» Цель: выявить степень усвоения учащимися изученного материалами и проанализировать ошибки, допущенные учащимися с целью дальнейшего их устранения: развивать навыки самостоятельной работы.
26
I– вариант Из 30 участников собрание надо выбрать председателя и секретаря. Сколькими способами это можно сделать? Курьер должен развести пакеты в 7 различных учреждений. Сколько маршрутов он может выбрать? В магазине «Филателия» продается 8 различных наборов марок посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?
27
4. В классе учатся 16 мальчиков и 12 девочек. Для уборки территории требуется выделить 4 мальчика и 3 девочки. Сколькими способами это можно сделать? 5. Сколько шестизначных чисел (без повторения цифр) можно составить из цифр 0, 3, 5, 6, 7, 8?
28
II– вариант Сколькими способами может разместиться семья из трех человек в четырехместном купе, если других пассажиров в купе нет? Сколькими способами 8 человек могут встать в очередь в театральную кассу? Учащимся дали список из 10 книг, которые нужно прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?
29
В библиотеке читателю предложили на выбор 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала? Сколько пятизначных чисел (без повторения цифр) можно составить из цифр 0, 2, 5, 6, 7? .
30
Решения I– варианта (способов) (способов) (способов) 1. 2. 3. 4. 5. P7=7!=1 · 2 · 3 · 4 · 5 · 6 · 7=5040 (способов) = (способов) P6-P5=6!-5!=1 · 2 · 3 · 4 · 5 · 6-1 · 2 · 3 · 4 · 5=720-120 =600
31
Решения II– варианта (способов)
32
Ответы: I вариант 870 5040 56 400400 600 II вариант 24 40320 210 720 96