- Презентации
- Презентация для урока алгебры Уравнение касательной 10 класс
Презентация для урока алгебры Уравнение касательной 10 класс
Автор публикации: Нестерова С.Ю.
Дата публикации: 01.10.2016
Краткое описание:
1
Касательная к графику функции 10 класс
2
Повторение: График - прямая Линейная функция: y= k x + b k - угловой коэффициент прямой Уравнение прямой с угловым коэффициентом
Благодаря этой рекламе сайт может продолжать свое существование, спасибо за просмотр.
3
Повторение: k = tg α Прямая, проходящая через точку (хо, f(хо)), с угловым коэффициентом f `(xo))
4
Повторение: Если в точке xo существует производная, то существует и касательная (невертикальная) к графику функции в точке xo.
5
Если же f’ (x0) не существует, то касательная либо не существует (как у функции у = |х|) вертикальна (как у графика функции у=3√х
6
Повторение: Варианты взаимного расположения касательной и оси абсцисс k>,0 k=0 k<,0 угол <, 900 (острый) угол = 00 угол >, 900 (тупой) у у у х х х β β
7
Повторение: Геометрический смысл производной: Угловой коэффициент касательной равен значению производной функции в точке проведения касательной k = f `(xo)
8
Выполните задание: Дана функция у = х3 Напишите уравнение касательной к графику этой функции в точке х0 = 1.
9
Тема урока: Уравнение касательной. Цели урока: 1. Вывести уравнение касательной к графику функции в точке х0. 2. Научиться составлять уравнение касательной для заданной функции.
10
Дана функция у = х3 Необходимо: написать уравнение касательной к графику этой функции в точке х0 = 1. Уравнение касательной у = 3х - 2
11
Дана функция у = f (x) Необходимо: написать уравнение касательной к графику этой функции в точке х0.
12
Вывод: Уравнение касательной имеет вид: y = f(xo) + f `(xo)( x – xo)
13
Алгоритм Найти значение функции в точке хо Вычислить производную функции Найти значение производной функции в точке хо Подставить полученные числа в формулу y = f(xo) + f `(xo)( x – xo) Привести уравнение к стандартному виду
14
15
16
Алгоритм Найти значение функции в точке хо Вычислить производную функции Найти значение производной функции в точке хо Подставить полученные числа в формулу y = f(xo) + f `(xo)( x – xo) Привести уравнение к стандартному виду
17
Задание*: На параболе у = 3х2 - 4х + 6 найти точку, в которой касательная к ней // прямой у =2х+4, написать уравнение касательной в этой точке.
18
Домашнее задание: формула!!! №№ 255(вг), 256(вг), задание*: На параболе у = х2 + 5х – 16 найти точку, в которой касательная к ней // прямой 5х+у+4 =0 и написать уравнение касательной в этой точке.