Келтіру формуласы (9 сынып)
Автор публикации: Тажигулова Н.С.
Дата публикации: 12.04.2016
Краткое описание:
1
2
Біліктілік: Оқушыларға сүйір бұрыштың тригонометриялық функциясының әрбір бұрышындағы синустыың, косинустың, тангенстің, котангенстің келтіру формулаларымен таныстыру, осы формулаларды тригонометриялық өрнектерді түрлендіруде және есептерді шығару кезінде қолдануды үйрету, Дамытушылық: Оқушылардың ақыл-ойын дамыту, ойлау қабілетін жетілдіру. Тәрбиелік: Оқушылардың алгебра пәніне қызығушылығын арттыру, оқушыларды алғырлыққа, шапшандыққа тәрбиелеу.
Благодаря этой рекламе сайт может продолжать свое существование, спасибо за просмотр.
3
І. Ұйымдастыру. ІІ. Үй тапсырмасын тексеру ІІІ. Жаңа сабақ. “Ой қозғау” ІҮ. Бекіту бөлімі. 1.Сәйкестендіру тесті 2.“Математикалық жәрмеңке” деңгейлік тапсырмалар Ү. Бағалау
4
Егер бұрышының функциялары берілсе, онда оларды α бұрышына байланысты тригонометриялық функцияларға келтіру ыңғайлы. Келтіру формулаларын k =1,2,3,4 болған жағдайда, өрнегін, яғни бұрыштары үшін қарастырамыз.
5
х у В1 D1 C1 D B C α O A ОА=R α бұрышына бұрамыз, сосын π/2+ α бұрамыз. ОА- ОВ-ОВ1 радиусына бұрамыз.
6
ЕРЕЖЕ «жұмыстық» бұрыштар арқылы келтіру: «Жазыңқы» бұрыштар арқылы келтіру: Функцияның аты Ауысады Ауыспайды Таңбасы оң жағының таңбасы сәйкес ширектегі келтірілген функцияның таңбасымен бірдей жазылады
7
8
Жоғарыдағы формулаларды пайдаланып, tgα,ctgα-нің келтіру формуласын шығаруға болады.
9
Есте сақта!!! Егер келтірілген тригонометриялық функцияның аргументі (бұрышы) π ±α (180 ±α), 2π ±α (360 ±α) түрінде болса, онда оның аты өзгермейді. Егер келтірілген тригонометриялық функцияның аргументі (бұрышы) π/2 ±α (90 ±α), 3π/2 ±α (270 ±α) түрінде болса, онда синус косинусқа, косинус синусқа, тангенс котангенске, котангенс тангенске өзгереді, Келтіру формуласының оң жағының таңбасы сәйкес ширектегі келтірілген функцияныі таңбасымен бірдей жазылады.
10
х sin x Cosα cos α -sin α sinα -cosα -cosα sinα -sinα cosx -sinα sinα -cosα -cosα sinα -sinα cosα cosα tg x -ctg α ctg α tg α -tg α -ctg α ctg α tg α -tg α ctg x -tg α tg α ctg α -ctg α -tg α tg α ctg α -ctg α
11
12
1. Сәйкестендіру тесті(өрнекті ықшамда) tg(π-α) cos α ctg(π+α) tg α sin(360-α) -tgα cos(360-α) ctgα ctg(360-α) - sinα tg(360+α) - ctgα
13
14
15
1. 2. а)75 ә) 150 б)200 бұрыштарының барлық тригонометриялық функциясын аргументі 45- тан аспайтын функциямен ауыстырыңдар.
16
17
18
19