- Учителю
- План урока на тему: Определение первообразной
План урока на тему: Определение первообразной
Определение первообразной.
Цели урока: знать правила дифференцирования, определение первообразной. Уметь определить является ли функция F первообразной для функции f на указанном промежутке.
Ход урока.
1. Организационный момент.
2. Устная работа.
1. Найдите производную функции
а) б)
в) г)
2. Найдите такую функцию, чтобы ее производной была данная функция:
а) б) в)
3. Объяснение нового материала.
Вспомнить механический смысл производной. С точки зрения механики скорость прямолинейного движения определяется как производная пути по времени. Если некоторая точка прошла путь S(t), то ее мгновенная скорость . Если теперь рассмотреть обратную задачу - нахождение пути, пройденного точкой с заданной скоростью, то придем к функции S(t), которую называют первообразной функции v(t), т.е. такой функцией, что . Так как производная постоянной равна нулю, то первообразная определяется с точностью до постоянной. Например, , и поэтому первообразной функции является функция . Учащиеся должны знать определение первообразной из учебника и что операция интегрирования - обратная операция дифференцирования.
4. Закрепление нового материала.
Разобрать № 326(а, б), 327(а, б), 330(а, б), 331(а, б).
5. Задание из ЕГЭ.
Задание A:
Укажите первообразную функции .
1) ; 2) ;
3) ; 4) .
Ответ: 1.
6. Итоги урока.
7. Домашнее задание.
Прочитать и разобрать §26.
Решить следующие задачи №330(в, г), 331(в, г).
Определение первообразной.
Цели урока: знать правила дифференцирования, определение первообразной, понятие интегрирования. Уметь определить является ли функция F первообразной для функции f на указанном промежутке, находить простейшие первообразные.
Ход урока.
1. Организационный момент.
2. Устная работа.
-
Сформулировать определение первообразной
-
Решить устно №1 (стр. 205)
3. Решение задач.
Прочитать примеры с 1 - 3 (стр. 174-175) из учебника.
Разобрать №328, 333, 334.
4. Задание из ЕГЭ.
Задание 1A:
Укажите первообразную функции на промежутке .
1) ; 2) ;
3) ; 4) .
Ответ: 2.
Задание 2В:
Найдите максимум функции .
Решение:
Критические точки:
Определим знаки производной
x = -2 - точка максимума, т.к. производная в ней меняет знак с «плюса» на «минус».
Ответ: 1
5. Итоги урока.
6. Домашнее задание.
Прочитать и разобрать §26.
Решить следующие задачи №329, 332.