7


  • Учителю
  • План урока на тему: Определение первообразной

План урока на тему: Определение первообразной

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

Определение первообразной.

Цели урока: знать правила дифференцирования, определение первообразной. Уметь определить является ли функция F первообразной для функции f на указанном промежутке.

Ход урока.

1. Организационный момент.

2. Устная работа.

1. Найдите производную функции

а) б)

в) г)

2. Найдите такую функцию, чтобы ее производной была данная функция:

а) б) в)


3. Объяснение нового материала.

Вспомнить механический смысл производной. С точки зрения механики скорость прямолинейного движения определяется как производная пути по времени. Если некоторая точка прошла путь S(t), то ее мгновенная скорость . Если теперь рассмотреть обратную задачу - нахождение пути, пройденного точкой с заданной скоростью, то придем к функции S(t), которую называют первообразной функции v(t), т.е. такой функцией, что . Так как производная постоянной равна нулю, то первообразная определяется с точностью до постоянной. Например, , и поэтому первообразной функции является функция . Учащиеся должны знать определение первообразной из учебника и что операция интегрирования - обратная операция дифференцирования.


4. Закрепление нового материала.

Разобрать № 326(а, б), 327(а, б), 330(а, б), 331(а, б).


5. Задание из ЕГЭ.

Задание A:

Укажите первообразную функции .

1) ; 2) ;

3) ; 4) .

Ответ: 1.


6. Итоги урока.

7. Домашнее задание.

Прочитать и разобрать §26.

Решить следующие задачи №330(в, г), 331(в, г).

Определение первообразной.

Цели урока: знать правила дифференцирования, определение первообразной, понятие интегрирования. Уметь определить является ли функция F первообразной для функции f на указанном промежутке, находить простейшие первообразные.

Ход урока.

1. Организационный момент.

2. Устная работа.

  1. Сформулировать определение первообразной

  2. Решить устно №1 (стр. 205)


3. Решение задач.

Прочитать примеры с 1 - 3 (стр. 174-175) из учебника.

Разобрать №328, 333, 334.


4. Задание из ЕГЭ.

Задание 1A:

Укажите первообразную функции на промежутке .

1) ; 2) ;

3) ; 4) .

Ответ: 2.

Задание 2В:

Найдите максимум функции .

Решение:

Критические точки:

Определим знаки производной


x = -2 - точка максимума, т.к. производная в ней меняет знак с «плюса» на «минус».

Ответ: 1


5. Итоги урока.

6. Домашнее задание.

Прочитать и разобрать §26.

Решить следующие задачи №329, 332.





 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал