7


  • Учителю
  • Самостоятельная работа по алгебре по теме 'Задачи на концентрацию' (7 класс)

Самостоятельная работа по алгебре по теме 'Задачи на концентрацию' (7 класс)

Автор публикации:
Дата публикации:
Краткое описание: Работа состоит из 10 вариантов. Самостоятельная работа по теме "Концентрация" содержит 3 задачи, взятых из Открытого банка заданий ЕГЭ по математике.Рассмотрены задачи на определение концентрации получившегося раствора при смешивании равных масс двух растворов различн
предварительный просмотр материала

Вариант 1

  1. Имеется два сплава. Первый содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

  2. Смешав 6-процентный и 74-процентный растворы кислоты и добавив 10 кг чистой воды, получили 19-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 24-процентный раствор кислоты. Сколько килограммов 6-процентного раствора использовали для получения смеси?

  3. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 82 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Вариант 2

  1. Имеется два сплава. Первый содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

  2. Смешав 54-процентный и 61-процентный растворы кислоты и добавив 10 кг чистой воды, получили 46-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 56-процентный раствор кислоты. Сколько килограммов 54-процентного раствора использовали для получения смеси?

  3. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 40 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Вариант 3

  1. Имеется два сплава. Первый содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

  2. Смешав 62-процентный и 93-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 67-процентный раствор кислоты. Сколько килограммов 62-процентного раствора использовали для получения смеси?

  3. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 62 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Вариант 4

  1. Имеется два сплава. Первый содержит 5% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

  2. Смешав 14-процентный и 98-процентный растворы кислоты и добавив 10 кг чистой воды, получили 70-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 74-процентный раствор кислоты. Сколько килограммов 14-процентного раствора использовали для получения смеси?

  3. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 52 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Вариант 5

  1. Имеется два сплава. Первый содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

  2. Смешав 40-процентный и 90-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 40-процентного раствора использовали для получения смеси?

  3. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 56 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Вариант 6

  1. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

  2. Имеется два сосуда. Первый содержит 100 кг, а второй - 60 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 41% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 50% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

  3. Смешали некоторое количество 11-процентного раствора некоторого вещества с таким же количеством 13-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Вариант 7

  1. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 13% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

  2. Имеется два сосуда. Первый содержит 100 кг, а второй - 60 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 19% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 22% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

  3. Смешали некоторое количество 16-процентного раствора некоторого вещества с таким же количеством 18-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Вариант 8

  1. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

  2. Имеется два сосуда. Первый содержит 100 кг, а второй - 85 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 44% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 47% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

  3. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Вариант 9

  1. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 8 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

  2. Имеется два сосуда. Первый содержит 50 кг, а второй - 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 14% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 23% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

  3. Смешали некоторое количество 13-процентного раствора некоторого вещества с таким же количеством 17-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Вариант 10

  1. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

  2. Имеется два сосуда. Первый содержит 100 кг, а второй - 40 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 85% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 88% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

  3. Смешали некоторое количество 18-процентного раствора некоторого вещества с таким же количеством 14-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?





 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал