- Учителю
- Урок алгебры в 11 классе по теме «Показательная функция, ее свойства и график».
Урок алгебры в 11 классе по теме «Показательная функция, ее свойства и график».
Урок алгебры в 11 классе по теме «Показательная функция, ее свойства и график».
Учитель: Вакажева Асиет Хазраиловна
Учебник: Мордкович А.Г.
Тема урока: Показательная функция, ее свойства и график (первый урок в теме).
Тип урока: урок формирования новых знаний.
Цель урока:
Образовательная: ввести определение показательной функции, формировать умение строить и преобразовывать графики показательной функции у=аx (где а>0, a≠1) уметь строить и преобразовывать график показательной функции, рассмотреть ее свойства.
Развивающая: Развитие логического мышления, умения сравнивать и обобщать.
Воспитательная: Воспитание познавательной активности.
Планируемые результаты:
Знать: определение показательной функции, свойства функции в зависимости от основания.
Уметь: строить, читать и преобразовывать графики показательной функции, находить наибольшее и наименьшее значения функции на заданном промежутке.
Используемое оборудование: проектор, компьютер, интерактивная доска
Структура урока:
-
Организационный момент
-
Актуализация опорных знаний
-
Изучение нового материала
-
Закрепление изученного материала
-
Домашнее задание
-
Итог урока
Ход урока.
-
Организационный момент (проверка готовности учащихся к уроку. Организация внимания учащихся.).
-
Актуализация опорных знаний (повторение):
-
Какие свойства функции вы знаете? (область определения, область значений, монотонность, четность/нечетность, ограниченность, непрерывность, выпуклость, экстремумы)
-
Какие преобразования графика функции вы знаете?
-
-
Изучение нового материала:
«Показательная функция, ее свойства и график» (записать в тетрадь).
Построить график функции y=2x.
Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=20=1; Точка А.
x=1, y=21=2; Точка В.
x=2, y=22=4; Точка С.
x=3, y=23=8; Точка D.
x=-1, y=2-1=1/2=0,5; Точка K.
x=-2, y=2-2=1/4=0,25; Точка M.
x=-3, y=2-3=1/8=0,125; Точка N
.
Большему значению аргумента х соответствует большее значение функции у. Функция y=2x возрастает на всей области определения D (y)=R, так как основание функции 2>1.
2) Построить график функции y=(1/2)x.
Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=(½)0=1; Точка A.
x=1, y=(½)1=½=0,5; Точка B.
x=2, y=(½)2=¼=0,25; Точка C.
x=3, y=(½)3=1/8=0,125; Точка D.
x=-1, y=(½)-1=21=2; Точка K.
x=-2, y=(½)-2=22=4; Точка M.
x=-3, y=(½)-3=23=8; Точка N.
Большему значению аргумента х соответствует меньшее значение функции y. Функция y=(1/2)x убывает на всей своей области определения: D (y)=R, так как основание функции 0<(1/2)<1.
.
Итак, функция у = ах, где а>0 и а 1 называется показательной, а ее график - экспонентой.
Почему накладывается условие а > 0 и а 1?
График любой функции у = ах при а > 1 имеет вид (на рисунке слева), а график любой функции у = ах при 0 < а < 1 имеет вид (на рисунке справа).).
Решить графически уравнения:
1) 3x=4-x.
В одной координатной плоскости построим графики функций: у=3х и у=4-х.
Графики пересеклись в точке А(1; 3). Ответ: 1.
2) 0,5х=х+3.
</</font>
В одной координатной плоскости строим графики функций: у=0,5х (y=(1/2)x ) и у=х+3.
Графики пересеклись в точке В(-1; 2). Ответ: -1.
4. Закрепление изученного материала
-
Приведите пример показательной функции.
-
При каком значении а показательная функция возрастает(убывает)?
-
Найти множество значений функции у = 2х + 3. Почему?
-
Решить по учебнику №39.16(а,б), №39.29(а,б), №39.31(а,б)
5. Домашнее задание п.39, №39.5,39.7,39.7,39.16(в,г), 39.32(а,б).
6. Итоги урока.
4