- Учителю
- Рабочая программа по геометрии 8 класс
Рабочая программа по геометрии 8 класс
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ
В результате изучения курса геометрии 8 класса учащиеся должны
знать:
-
основные понятия и определения геометрических фигур по программе;
-
формулировки основных теорем и их следствий;
уметь:
-
пользоваться 'геометрическим языком для описания предметов окружающего мира; распознавать геометрические фигуры, различать их взаимное расположение; изображать геометрические фигуры, выполнять чертежи по условию задач, осуществлять преобразования фигур;
-
решать задачи на вычисление геометрических величин, применяя изученные свойства фигур и формулы; решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними и применяя дополнительные построения, алгебраический аппарат и соображения симметрии;
-
проводить доказательные рассуждения при решении задач, используя известные теоремы и обнаруживая возможности
для их использования; решать простейшие планиметрические задачи в пространстве;
-
владеть алгоритмами решения основных задач на построение;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания реальных ситуаций на языке геометрии; решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства); построений геометрическими инструментами(линейка, угольник, циркуль, транспортир); владения практическими навыками использования геометрических инструментов для изображения фигур, а также нахождения длин отрезков и величин углов.
</ СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Треугольник 14 ч. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 90°. Решение прямоугольных треугольников. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.
Четырехугольник 14 ч. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.
Окружность и круг 19 ч. Центр, радиус, диаметр. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.
Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники.
Измерение геометрических величин 17 ч. Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника. Связь между площадями подобных фигур. Построения с помощью циркуля и линейки. Деление отрезка на п равных частей, построение четвертого пропорционального отрезка.