- Учителю
- Работа по математике для НПК Старт в науку на тему Аликвотные дроби
Работа по математике для НПК Старт в науку на тему Аликвотные дроби
Секция: Математика
МОУ «Яльгелевская общеобразовательная школа»
Тема проекта: «Аликвотные дроби»
Участник конференции: Сапронов Дмитрий
Класс 6
Руководитель проекта: Дектярева Вера Васильевна, учитель математики
Содержание.
-
Введение ……………………………………………………………..….3
-
Основная часть:
-
. Происхождение аликвотных дробей.………………………..….5
-
Основные операции над аликвотными дробями…………….....8
-
Решение задач из учебника ………………………………….…10
-
Решение олимпиадных задач ………………………….……….11
-
Авторская задача ……………………………………………….12
-
-
Заключение………………………………………………………………13
-
Используемая литература…………………………………………..…...14
1.Введение
Тема «Аликвотные дроби» является интересной темой для исследования дробей. Столкнувшись с этим термином впервые, понимаешь, почему в Древнем Египте математики «настоящими» дробями считали только аликвотные дроби.
Необходимость в дробных числах возникла в результате практической деятельности человека. Потребность в нахождении долей единицы появилась наших предков при дележе добычи после охоты. Второй существенной причиной появления дробных чисел следует считать измерение величин при помощи выбранной единицы измерения.
Первой дробью, с которой познакомились люди, была половина. Хотя названия всех следующих дробей связаны с названиями их знаменателей (три - «треть», четыре - «четверть» и т. д.), для половины это не так - ее название во всех языках не имеет ничего общего со словом «два». Следующей дробью была треть.
Таким образом, первые дроби, с которыми нас знакомит история, это дроби вида - - так называемые единичные дроби или аликвотные (от лат. aliquot - «несколько»).
Единичные дроби встречаются в древнейших дошедших до нас математических текстах, составленных более 5000 лет тому назад, - древнеегипетских папирусах и вавилонских клинописных табличках.
Египетская дробь - в математике сумма нескольких дробей вида (так называемых аликвотных дробей). Другими словами, каждая дробь суммы имеет числитель, равный единице, и знаменатель, представляющий собой натуральное число.
Пример: .
Египетская дробь представляет собой положительное рациональное число вида a/b; к примеру, египетская дробь, записанная выше, может быть записана в виде дроби 43/48. Можно показать, что каждое положительное рациональное число может быть представлено в виде египетской дроби. Сумма такого типа использовалась математиками, как определение, для дробей начиная со времён древнего Египта до средневековья.
Задачи с использованием в решении аликвотных дробей составляют обширный класс нестандартных задач. Сюда относятся, прежде, всего, задачи, в которых требуется разделить какие-либо ресурсы на несколько частей с наименьшим количеством действий для этого.
Объект исследования:
-
аликвотные дроби
Цель исследования:
-
Выяснить, какое значение имеют аликвотные дроби в нашей жизни
Задачи исследования:
-
Узнать происхождение аликвотных дробей.
-
Рассмотреть основные операции с аликвотными дробями.
-
Решать олимпиадные задачи с помощью аликвотных дробей.
-
Составлять и решать задачи практического содержания.
2.Основная часть.
-
-
Происхождение аликвотных дробей.
-
Тема «Аликвотные дроби» является интересной темой для исследования дробей. Столкнувшись с этим термином впервые, понимаешь, почему в Древнем Египте математики «настоящими» дробями считали только аликвотные дроби.
Итак, Египтяне все дроби записывали как суммы долей, то есть дробей вида 1/n. Например: 8/15=1/3+1/5. Дроби 1/n (где n - натуральные число ), которым египтяне отдавали предпочтение, в современной математике именуются аликвотными ( от латинского aliguot- " несколько''). То есть аликвотными дробями называются дроби с числителем 1. И даже сами аликвотные дроби они часто стремились представить в виде суммы меньших аликвотных дробей. Например,
1/2=1/3+1/6, 1/4=1/5+1/20
Египтяне ставили иероглиф</ «Глаз Хора» - единица для измерения ёмкостей и объемов,
представляла собой дробь , так как согласно мифам глаз Хора был выбит, а затем восстановлен на . Каждая часть глаза соответствовала определённой дроби и была представлена в виде суммы аликвотных дробей таким образом: + + + + + = .
Причиной появления этих дробей являлась необходимость разбить единицу на доли. Это нужно было для того:
-
чтобы разделить добычу после охоты, ведь, нужно было знать, сколько частей составляет целое и кому какая часть добычи станет принадлежать.
-
чтобы поделить основную меру объёма в Древнем Египте - «хекат».
Такие дроби использовались вместе с другими формами записи египетских дробей для того, чтобы поделить «хекат», основную меру объёма в Древнем Египте, т.е.аликвотные дроби нужны были египтянам в практических целях.
Рассмотрим такую задачу:,,Разделить 7 хлебов между 8 людьми. Если разрезать каждый хлеб на 8 частей, придется провести 49 разрезов. А по-египетски эта задача решалась так: 7/8= 1/2 +1/4 +1/8. Значит, каждому человеку дать полхлеба, четверть хлеба и восьмушку хлеба. Придется сделать почти в три раза меньше разрезов.
Египетские дроби продолжались использоваться в древней Греции и впоследствии математиками всего мира до средних веков, несмотря на имеющиеся к ним замечания древних математиков. К примеру, Клавдий Птолемей говорил о неудобстве использования египетских дробей по сравнению с Вавилонской системой (позиционная система исчисления)
Важную работу по исследованию египетских дробей провёл математик XIII века Фибоначчи в своём труде «Liber Abaci» - это
вычисления, использующие десятичные и обычные дроби, вытеснившие со временем египетские дроби. Фибоначчи использовал сложную запись дробей, включавшую запись чисел со смешанным основанием и запись в виде сумм дробей, часто использовались и египетские дроби. Также в книге были приведены алгоритмы перевода из обычных дробей в египетские.
Новейшее время:
Современные математики продолжают исследовать ряд задач, связанных с египетскими дробями и достигли больших успехов в этом направлении.
Аликвотные струны
Аликвотные дроби применятся и в жизни. В ходе работы я узнал, что бывают аликвотные струны, чаще всего их называют резонансовыми струнами. Это дополнительные струны, к которым исполнитель не прикасается во время игры. Резонансовые струны само возбуждаются от колебания игровых струн, служат для усиления их звучания и для обогащения тембровых возможностей инструмента. Эти струны размещаются под грифом, сбоку или под игровыми струнами. Встречаются у многих индийских инструментов, у хардингфеле, у некоторых виолончелей.
2.2 Основные операции над аликвотными дробями
Чтобы представить какое-либо число в виде суммы аликвотных дробей, порой приходится проявлять, незаурядную изобретательность. Скажем, число 2/43 выражается так: 2/43= 1/42 +1/86 +1/129 +1/301.Производить арифметические действия над числами, раскладывая их в сумму долей единицы, очень неудобно.
Поэтому в процессе решения задач для разложения аликвотных дробей в виде суммы меньших аликвотных дробей возникла идея систематизировать разложение дробей в виде формулы. Эта формула действует, если требуется разложение аликвотной дроби на две аликвотные дроби.
Формула выглядит следующим образом:
1/n=(1/(n+1)) +(1/n*(n+1))
Примеры разложения дробей:
1/3=1/(3+1)+1/3*(3+1)=1/4 +1/12;
1/5=1/(5+1)+1/5*(5+1)=1/6 +1/30;
1/8=1/(8+1)+1/8*(8+1)=1/9+ 1/72.
Но если преобразовать нашу формулу, то получим следующее полезное равенство:
1/(n*(n+1)) =1/n -1/(n+1)
1/6=1/(2*3)=1/2 -1/3
½=1/(1*2) =1/1 -1/2
Т.е. аликвотную дробь можно представить разностью двух аликвотных дробей, или разность двух аликвотных, знаменателями которых являются последовательные числа равна их произведению.
Вернемся к формуле и докажем это равенство:
1/n=(1/(n+1)) +(1/n*(n+1))
(1/(n+1)) +(1/n*(n+1)), приведя дроби к общему знаменателю, получаем:
(n+1)/((n+1)*n) после сокращения получаем:
1/n.
Итак, получается, что 1/n=1/n. Наша формула верна.
Но мы пойдем дальше, и на основании разности аликвотных дробей решим, на первый взгляд, трудноразрешимую для обычного человека задачу:
1/2+1/(2*3)+1/(3*4)+1/(4*5)+…….+1/(19*20) =????
Воспользуемся нашей формулой для разложения аликвотной дроби в виде разности:
½=1/(1*2) =1/1 -1/2
1/6=1/(2*3)=1/2-1/3
1/12=1/(3*4)=1/3-1/4
1/20=1/(4*5) =1/4-1/5 и т.д.
Подставив, уже разложенные выражения в наш пример, получаем:
1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5……..+1/19-1/19-1/20=1/1-1/20=19/20.
Мы представили формулу, как удобство при разложении аликвотной дроби на 2 слагаемых. При разложении 1 на два слагаемых получается:
1=1/2+1/2 (Наша формула действует!). Чтобы разложить 1 на 3 слагаемых, мы возьмем одну аликвотную дробь и по формуле разложим ее еще на две аликвотные дроби:
½=1/3+1/6 =½=1/3+1/6 => 1=1/2+1/3+1/6;
Чтобы разделить на 4 слагаемых, делим еще одну дробь на две аликвотные дроби:
1/3=1/4+1/12 => 1=1/2+1/4+1/12+1/6;
На 5 слагаемых: 1/6=1/7+1/42 => 1=1/2+1/4+1/12+1/7+1/42.
Открытые проблемы
Гипотеза Эрдёша-Страуса утверждает, что для всякого целого числа
n ≥ 2, существуют положительные целые x, y и z такие, что
4/n=1/x+ 1/y+ 1/z
Компьютерные эксперименты показывают, что гипотеза верна для всех n ≤ 1014, но доказательство пока не найдено. Обобщение этой гипотезы утверждает, что для всякого положительного k существует N такое, что для всех n ≥ N существует разложение
k/n=1/x+1/y+1/z
2.3 Решение задач из учебника
2.3.1.Представить число 1 в виде сумм различных аликвотных дробей
А) трех слагаемых
1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6
Б) четырех слагаемых
1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)= 1/2+1/3+1/7+1/42
B) 5-и слагаемых
1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)=
1/2+1/3+1/7+1/42=1/2+(1/4+1/12) +1/7+1/42=
1/2+1/4+1/12 +1/7+1/42
2.3.2.Митя обнаружил, что 1/n часть класса написала работу лучше него, а 1/(n-1) часть класса - хуже него. Сколько учеников в классе?
Если 1/n написало лучше, а 1/(n-1) хуже. В идеале никто не написал работу также, как и он, но с таким же результатом могло быть и большее количество учеников.
За нескольких сказать ничего не могу, а за одного: Мы можем взять число всех учеников классе за 1. И тогда получается, что мы должны разложить число 1 на 3-и аликвотные дроби.
1=1/n+1/(n-1) +1/x
1/x=1/n*(n-1) тогда получается, что в классе n*(n-1) учеников.
1=1/(n-1) +1/n+1/(n*(n-1))
Методом подбора мы видим, что 1 раскладывается на аликвотные дроби только следующим образом:
1=1/2+1/2=1/2+1/3+1/6 во всех других случаях мы не сможем получить из суммы других аликвотных дробей 1.
Так что, в случае, если он один написал работу с таким результатом, можно утверждать, что в классе 6 человек.
А если таких учеников было несколько, то задача имеет множество решений.
1/x=(n*(n-1) -n -n+1) /(n*(n-1))
2.4 Решение олимпиадных задач
2.4.1.Найди сумму
1/(10*11)+1/(11*12)+…+1/(98*99)+1/(99*100)=?
Чтобы найти решение данной задачи необходимо найти сумму
1/(1*2)+1/(2*3)+…+1/(98*99)+1/(99*100)=99/100
И вычесть из нее сумму
1/(1*2)+1/(2*3)+…+1/(8*9)+1/(9*10)=9/10
99/100-9/10 = (99-90)/100=9/100=0.09
2.4.2.Найти сумму
½+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90=
-
1, b) 10/11, c) 4/5, d) 8/9, e) 9/10
1/(1*2)+1/(2*3)+1/(3*4)+1/(5*6)+1/(6*7)+1/(7*8)+1/(8*9)+1/(9*10) =9/10
Ответ: e)
2.5 Авторская задача
Чтобы узнать год празднования 100летия Российского государственного академического Большого драматического театра имени Г. А. Товстоногова (Санкт-Петербург) нужно год проведения в Санкт-Петербурге Чемпионата мира по футболу разделить на сумму аликвотных дробей
1/(1*2) +1/(2*3) +1/(3*4) +…+1/(2018*2019) .
Решение:
1/(1*2)+1/(2*3)+1/(3*4)+…+1/(2018*2019)=2018/2019
2018 : 2018/2019 = 2019
Ответ: 2019 год празднования 100летия Российского государственного академического Большого драматического театра имени Г. А. Товстоногова (Санкт-Петербург).
3.Заключение.
Таким образом, при разработке данной темы, мы узнали, что первыми дробями, которыми оперировали люди, были аликвотные дроби. Выяснили, что каждое рациональное число вида a/b может быть разложено на единичные дроби.
Задачи с использованием аликвотных дробей составляют обширный класс нестандартных задач. Аликвотные дроби используются тогда, когда требуется что-то разделить на несколько частей с наименьшим количеством действий для этого.
Разложение дробей на две аликвотные дроби систематизировали в виде формулы, преобразовав которую, легко решили олимпиадные задачи по математике разных лет.
Решив проблему разложения аликвотных дробей на две аликвотные дроби, мы пришли к выводу, что разложение на три, четыре, пять и т.д. аликвотных дробей можно произвести, разложив одно из слагаемых на две дроби, следующее слагаемое еще на две аликвотные дроби и т.д.
Таким образом, аликвотные дроби (с числителем 1) долгое время были единственными дробями, с которыми как-то умел оперировать человек, а правила действий с произвольными дробями разработаны «сравнительно недавно».
В современной математике вместо египетских дробей используются простые и десятичные дроби, однако египетские дроби продолжают изучаться в теории чисел и истории математики.
И я считаю, что на эти дроби в школьном курсе нужно обращать как можно больше внимания, ведь в учебниках даже нет понятия «аликвотные дроби». С Древних времен тема «Дроби» считалась одной из самых сложных, поэтому, когда человек попадал в трудное положение, говорили: «Попал в дроби». Для того чтобы в жизни у вас все получалось, нужно знать и изучать дроби!
4.Используемая литература:
-
Энциклопедический словарь юного математика для среднего и старшего школьного возраста. М.: Педагогика,1989.
-
Левитас Г. Г. Нестандартные задачи по математике.- М.: ИЛЕКСА,2007.
-
Баженов И.И., Порошкин А.Г. и др. Задачи для школьных математических кружков. Сыктывкар, 1994.
-
Гаврилова Т. Д. «Занимательная математика». 5-11класс. Волгоград: Учитель, 2008.
-
Фарков А. В. Математические олимпиады в школе. 5-11класс. - М.: Айрис-пресс, 2005.
-
Петерсон Л. Г. Математика. 5класс. - М.:Ювента, 2009.