7


  • Учителю
  • Рабочая программа по алгебре 7 класс

Рабочая программа по алгебре 7 класс

Автор публикации:
Дата публикации:
Краткое описание:   I. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Статус документа            Настоящая программа по алгебре для основной общеобразовательной школы 7 класса составлена на основе федерального компонента государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 10
предварительный просмотр материала



I. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Статус документа

Настоящая программа по алгебре для основной общеобразовательной школы 7 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), программы общеобразовательных учреждений по алгебре 7-9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова - М: «Просвещение», 2008. - с. 22-26)

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции.
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Программа соответствует учебнику «Алгебра» для 7 класса общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н.


Общая характеристика учебного предмета

В курсе алгебры 7 класса систематизируются и обобщаются сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной; учащиеся знакомятся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида, действиями над степенями с натуральными показателями, формулами сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители, со способами решения систем линейных уравнений с двумя переменными, вырабатывается умение решать системы уравнений и применять их при решении текстовых задач.

Изучение алгебры 7 класса нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Цели изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.

Место предмета в федеральном базисном учебном плане

Согласно Федеральному базисному учебному плану на изучение математики в 7 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии может быть следующим:

5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 120 часов; 2 часа в неделю геометрии во II-IV четверти, итого 50 часов.

Количество учебных часов:

В год -120 (I четверть - 5 часов в неделю, II, III ,IV четверти 3 часа, всего 120 часов)

В том числе:

Контрольных работ-11 (включая вводную и итоговую контрольные работы)

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Уровень обучения - базовый.

Отличительные особенности рабочей программы по сравнению с примерной:

В программу внесены изменения: уменьшено или увеличено количество часов на изучение некоторых тем. Сравнительная таблица приведена ниже.

Раздел

Количество часов в программе

Количество часов в рабочей программе

Повторение

-

3

Глава I. Выражения, тождества, уравнения

24

24

Глава II. Функции

14

14

Глава III. Степень с натуральным показателем

15

15

Глава IV. Многочлены

20

20

Глава V. Формулы сокращенного умножения

20

20

Глава IV. Системы линейных уравнений

17

17

Повторение

10

7


Внесение данных изменений позволит охватить весь изучаемый материал по программе, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.


Срок реализации рабочей учебной программы - один учебный год.


В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: разноуровневое обучение, обучение с применением опорных схем, ИКТ.


Общеучебные умения, навыки и способы деятельности.

В ходе преподавания алгебры в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие 6 класс. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».

2.ОСНОВНОЕ СОДЕРЖАНИЕ


Повторение (3 часа).

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 6 класса.


ГЛАВА 1. Выражения, тождества, уравнения (24 часа)

Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5-6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.

Глава 2. Функции (14 часов)

Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.

Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида - прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

Глава 3. Степень с натуральным показателем (15 часов)

Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.

Цель: выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm · аn = аm+n; аm : аn = аm-n, где m > n; (аm)n = аm·n; (ab)m = ambm учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2:график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.

Глава 4. Многочлены (20 часов)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Цель: выработать умение выполнять сложе­ние, вычитание, умножение многочленов и разложение многочленов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами - сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

Глава 5. Формулы сокращенного умножения (20 часов)

Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2b + За b2 ± b3, (а ± b) (а2 а b + b2) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.

Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2b + За b2 ± b3, (а ± b) (а2 а b + b2) = а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Глава 6. Системы линейных уравнений (17 часов)

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

7. Повторение (7 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.

IV. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ


В результате изучения курса алгебры 7 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с натуральными показателями, с многочленами; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • решать линейные уравнения решать линейные решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3), строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.


Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.


Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


2.Оценка устных ответов обучающихся по математике


Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна - две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.


Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.


Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.


Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  • незнание наименований единиц измерения;

  • неумение выделить в ответе главное;

  • неумение применять знания, алгоритмы для решения задач;

  • неумение делать выводы и обобщения;

  • неумение читать и строить графики;

  • неумение пользоваться первоисточниками, учебником и справочниками;

  • потеря корня или сохранение постороннего корня;

  • отбрасывание без объяснений одного из них;

  • равнозначные им ошибки;

  • вычислительные ошибки, если они не являются опиской;

  • логические ошибки.


3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  • неточность графика;

  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  • нерациональные методы работы со справочной и другой литературой;

  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;

  • небрежное выполнение записей, чертежей, схем, графиков.


Учебно-методический комплекс учителя:

Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2008 год.

Изучение алгебры в 7-9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..- М.: Просвещение, 2008.

Алгебра. 7 класс: поурочные планы по учебнику Ю.Н.Макарычева и др./ав.-сост. Л.А.Тапилина, Т.Л.Афанасьева.- Волгоград: Учитель, 2007.

Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. - М.: Просвещение, 2007-2008.

Вероятность и статистика. 5-9 кл.: пособие для общеобразоваь.учеб.заведений/ Е.А.Бунимович, В.А.Булычев.-М.: Дрофа, 2004.


Учебно-методический комплекс ученика:

Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2008 год.

Вероятность и статистика. 5-9 кл.: пособие для общеобразоват.учеб.заведений/ Е.А.Бунимович, В.А.Булычев.-М.: Дрофа


Календарно- тематическое планирование

п/п

Тема урока

Кол-во часов

Дата по плану

Дата по факту

Примечание


Повторение курса 6 класса

3




1

Повторение по теме «Обыкновенные дроби. Действия с дробями».

1

1.09



2

Повторение по теме «Рациональные числа. Действия с рациональными числами».

1

2.09



3

Повторение по теме «Решение уравнений».

1

2.09




1. Выражения, тождества, уравнения

24



1.1 Выражения

5


4

Числовые выражения.

1

3.09



5

Выражения с переменными.

1

5.09



6

Решение задач на составление выражений.

1

5.09



7

Сравнение значений выражений.

1

9.09



8

Числовые выражения с переменными

1

9.09




1.2 Преобразование выражений.

6


9

Простейшие преобразования.

1

10.09



10

Простейшие преобразования выражений.

1

12.09



11

Тождества.

1

13.09



12

Тождественно равные выражения.

1

15.09



13

Решение задач по теме «Преобразование выражений».

1

16.09



14

Контрольная работа №1 по теме «Выражения. Преобразование выражений».

1

17.09




1.3 Уравнения с одной переменной.

8


15

Анализ контрольной работы. Уравнения.

1

19.09



16

Корень уравнения.

1

19.09



17

Линейное уравнение.

1

20.09



18

Линейное уравнение с одной переменной.

1

22.09



19

Решение линейных уравнений.

1

23.09



20

Решение задач на составление уравнений

1

24.09



21

Решение задач с помощью уравнений.

1

26.09



22

Самостоятельная работа по теме «Уравнения с одной переменной».

1

27.09




1.4 Статистические характеристики.

5


23

Среднее арифметическое.

1

29.10



24

Размах и мода.

1

30.09



25

Медиана.

1

1.10



26

Решение задач по теме «Статистические характеристики».

1

3.10



27

Контрольная работа № 2 по теме «Уравнения с одной переменной».

1

6.10




  1. Функции

14

2.1 Функции и их графики.

6


28

Анализ контрольной работы. Функция.

1

7.10



29

Область определения функции.

1

8.10



30

Вычисление значений функции по формуле.

1

10.10



31

График функции.

1

11.10



32

Построение графика функции.

1

13.10



33

Решение задач на чтение графиков функций.

1

14.10




2.2 Линейная функция.

8


34

Прямая пропорциональность.

1

15.10



35

Прямая пропорциональность и её график.

1

17.10



36

Линейная функция.

1

18.10



37

Линейная функция и её график.

1

20.10



38

Решение задач на построение графика линейной функции.

1

21.10



39

Решение задач на чтение графика линейной функции.

1

22.10



40

Решение задач по теме «Функции».

1

24.10



41

Контрольная работа №3 по теме «Функции».

1

25.10




  1. Степень с натуральным показателем.

15

3.1Степень и ее свойства.

8


42

Анализ контрольной работы. Степень с натуральным показателем.

1

27.10



43

Степень с натуральным показателем и ее свойства.

1

28.10



44

Умножение степеней. am *an=am+n

1

29.10



45

Деление степеней. am :an=am-n

1

5.11



46

Возведение в степень произведения. (ab)n=anbn

1

8.11



47

Возведение в степень степени. (am)n=amn

1

10.11



48

Решение задач по теме «Степень и ее свойства».

1

12.11



49

Самостоятельная работа по теме «Степень и ее свойства».

1

15.11




3.2 Одночлены.

7


50

Одночлены.

1

17.11



51

Умножение одночленов.

1

19.11



52

Возведение одночлена в степень.

1

22.11



53

Функция у=х2 и ее график.

1

24.11



54

Функция у=х3 и ее график.

1

26.11



55

Графический способ решения уравнений.

1

29.11



56

Контрольная работа №4 по теме «Степень с натуральным показателем».

1

1.12




  1. Многочлены.

20

4.1 Многочлен

4


57

Анализ контрольной работы. Многочлен.

1

3.12



58

Стандартный вид многочлена

1

6.12



59

Степень многочлена.

1

8.12



60

Алгоритмы действий с многочленами.

1

10.12




4.2 Сумма и разность многочленов.

7


61

Сложение многочленов.

1

13.12



62

Вычитание многочленов.

1

15.12



63

Вынесение общего множителя за скобки

1

17.12



64

Внесение общего множителя в скобки.

1

20.12



65

Преобразования целых выражений.

1

22.12



66

Решение задач по теме «Произведение одночлена и многочлена».

1

24.12



67

Контрольная работа № 5 по теме «Сумма и разность многочленов».

1

27.12




4.3 Произведение многочленов.

9


68

Анализ контрольной работы. Умножение многочленов.

1

18.12



69

Решение задач на умножение многочленов.

1

20.12



70

Разложение многочленов на множители.

1

23.12



71

Разложение многочлена на множители способом группировки.

1

25.12



72

Решение задач на разложение многочлена на множители.

1

27.12



73

Решение уравнений

1

17.01



74

Решение задач методом составления уравнений.

1

19.01



75

Решение задач по теме «Произведение многочленов».

1

21.01



76

Контрольная работа №6 по теме «Произведение многочленов».

1

24.01




  1. Формулы сокращенного умножения.

20

5.1 Квадрат суммы и разности.

5


77

Анализ контрольной работы. Возведение в квадрат суммы двух выражений. (a+b)2=a2+2ab+b2


1

26.01



78

Возведение в квадрат разности двух выражений. (a-b)2=a2-2ab+b2

1

28.01



79

Возведение в куб суммы двух выражений. (a+b)3=a3+3a2b+3ab2+b3

1

31.01



80

Возведение в куб разности двух выражений. (a-b)3=a3-3a2b+3ab2-b3

1

2.02



81

Разложение на множители с помощью квадрата суммы и разности двух выражений.

1

4.02




5.2 Разность квадратов. Сумма и разность кубов.

6


82

Умножение разности двух выражений на их сумму. (a+b)(a-b)=a2-b2

1

7.02



83

Разложение разности квадратов на множители.

1

9.02



84

Разложение на множители суммы и разности кубов. a3+b3=(a+b)(a2-ab+b2), a3-b3=(a-b)(a2+ab+b2)

1

11.02



85

Тождественные преобразования целых выражений.

1

14.02



86

Решение задач по теме «Разность квадратов».

1

16.02



87

Контрольная работа №7 по теме «Формулы сокращенного умножения».

1

18.02




5.3 Преобразование целых выражений.

9


88

Анализ контрольной работы. Преобразование целых выражений.

1

21.02



89

Преобразование целого выражения в многочлен.

1

25.02



90

Различные приемы разложения многочленов на множители.

1

28.02



91

Решение задач на разложение на множители.

1

2.03



92

Разложение на множители с применением формул сокращенного умножения

1

4.03



93

Возведение двучлена в степень.

1

7.03



94

Решение задач на возведение в степень.

1

9.03



95

Контрольная работа №8 по теме «Преобразование целых выражений».

1

11.03



96

Анализ контрольной работы. Решение задач по теме «Преобразование целых выражений».

1

14.03




  1. Системы линейных уравнений.

17

6.1 Линейные уравнения с двумя переменными и их системы.

7


97

Линейное уравнение с двумя переменными.

1

16.03



98

Решение линейных уравнений с двумя переменными.

1

18.03



99

Решение задач на уравнения с двумя переменными.

1

21.03



100

График линейного уравнения с двумя переменными. a+by=c

1

1.04



101

Решение линейного уравнения с двумя переменными по графику.

1

4.04



102

Самостоятельная работа по теме «Линейные уравнения с двумя переменными».


1

6.04



103

Системы двух линейных уравнений с двумя переменными.

1

8.04




6.2 Решение систем линейных уравнений.

10


104

Решение систем линейных уравнений.

1

11.04



105

Способ подстановки.

1

13.04



106

Решение систем линейных уравнений способом подстановки.

1

15.04



107

Способ сложения.

1

18.04



108

Решение систем линейных уравнений способом сложения.

1

20.04



109

Решение систем способом подстановки и сложения.

1

22.04



110

Решение текстовых задач методом составления систем уравнений.

1

25.04



111

Линейные неравенства с двумя переменными.

1

27.04



112

Решение задач по теме «Системы линейных уравнений».

1

29.04



113

Контрольная работа №9 по теме «Системы линейных уравнений».

1

2.05




Повторение.

7


114

Анализ контрольной работы. Повторение по теме «Преобразование выражений. Уравнения».

1

4.05


6.05



115

Повторение по теме «Функции».

1



116

Повторение по теме «Степень с натуральным показателем».

1

11.05



117

Повторение по теме «Формулы сокращенного умножения».

1

13.05



118

Итоговая контрольная работа.

1

16.05



119

Анализ контрольной работы. Решение систем линейных уравнений.

1

18.05



120

Решение графических задач.

1

20.05



ИТОГО:

120ч

10к/р



Список литературы:

  1. Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).

  2. Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).

  3. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)

  4. Программа общеобразовательных учреждений. Алгебра 7-9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова - М: «Просвещение», 2008. - с. 22-26)

  5. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.- М.: Дрофа, 2000.

  6. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2008 год.

  7. Изучение алгебры в 7-9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..- М.: Просвещение, 2005-2008.

  8. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. - М.: Просвеще­ние, 2007-2008.

  9. Элементы статистики и вероятность: учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений /М.В.Ткачева, Н.Е.Федорова-- М.: Просвещение, 2007г.

10. Алгебра. 7 класс: поурочные планы по учебнику Ю.Н.Макарычева и др./ав.-сост.

Л.А.Тапилина, Т.Л.Афанасьева.- Волгоград: Учитель, 2007.

11. Ю.Н.Макарычев, Н.Г Миндюк, Элементы статистики и теории вероятностей Алгебра 7-9 классы .-М.: Просвещение, 2007.


Дополнительная литература:

  1. Я иду на урок математики: 7 класс: Книга для учителя. - М.: Издательство «1 сентября», 2000;

  2. Алгебра. 7 класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Л.А Топилина, Т.Л. Афанасьева. - Волгоград: Учитель, 2006;

  3. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;

  4. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 7 классе- М.: «Вербум - М», 2000;

  5. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. - М.: Просвещение, 2004;

  6. ЕГЭ Математика 9 класс. Экспериментальная экзаменационная работа. Типовые тестовые задания / Т.В. Колесникова, С.С. Минаева. - М.: Издательство «Экзамен», 2007;

  7. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.- М.: Просвещение, 2006.



 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал