- Учителю
- Программа элективного курса по математике 8 класс
Программа элективного курса по математике 8 класс
Муниципальное бюджетное общеобразовательное учреждение -
Приаргунская средняя общеобразовательная школа
«Рассмотрено»
Руководитель МО
____________Капишулина И.М
Протокол № ___ от
«____»____________20__ г.
«Согласовано»
Заместитель директора школы по УВР МБОУ Приаргунская СОШ
_____________ Лаптева М.М.
«____»____________20__ г.
«Утверждено»
Директор МБОУ Приаргунская СОШ
_____________Золотовская Г.И..
«___»_____________20__ г.
Батсуурь Солонго Аленксандровна
Программа элективного курса по математике
«Математика в вопросах и ответах»
для 8 «А» и «Б» классов
(математика - 1 час в неделю, 34 часа в год)
2016- 2017 учебный год
Экзаменационная работа за курс основной школы по математике состоит из двух частей. Часть 1 направлена на проверку достижений уровня базовой подготовки учащихся по математике. Часть 2 предназначена для дифференцированной проверки повышенного уровня математической подготовки учащихся.
Данный курс предназначен для дополнительной подготовки учащихся 8-го класса к итоговой аттестации по алгебре и включает в себя темы, необходимые для успешной сдачи второй части экзамена. Курс состоит из 4 разделов: «Числа и вычисления», «Выражения и преобразования», «Уравнения и неравенства», «Функции».
Цели и задачи:
-
углубление и расширение знаний учащихся по изучаемым темам;
-
подготовка учащихся к успешной сдачи экзамена за курс основной школы по новой форме.
Планируемые результаты освоения учебного предмета
Личностные результаты освоения учебного курса:
1. Российская гражданская идентичность. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.
2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам. Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания.
6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. .
7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
Метапредметные результаты освоения учебного курса:
Регулятивные УУД
-
Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
-
анализировать существующие и планировать будущие образовательные результаты;
-
идентифицировать собственные проблемы и определять главную проблему;
-
выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
-
ставить цель деятельности на основе определенной проблемы и существующих возможностей;
-
Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
-
определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
-
обосновывать выбор наиболее эффективных способов решения учебных и познавательных задач;
-
определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
-
выбирать из предложенных вариантов средства/ресурсы для решения задачи/достижения цели;
-
определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
-
Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
-
систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
-
отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
-
устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
-
Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
-
определять критерии правильности (корректности) выполнения учебной задачи;
-
анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
-
Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
-
самостоятельно определять причины своего успеха или неуспеха;
Познавательные УУД
-
Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
-
выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
-
выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
-
объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
-
делать вывод на основе критического анализа разных точек зрения.
-
Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
-
обозначать символом и знаком предмет и/или явление;
-
определять логические связи между предметами и/или явлениями;
-
строить модель/схему на основе условий задачи и/или способа ее решения;
-
преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
-
Смысловое чтение. Обучающийся сможет:
-
находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
-
ориентироваться в содержании текста, понимать целостный смысл текста.
Коммуникативные УУД
9. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
-
определять возможные роли в совместной деятельности;
-
играть определенную роль в совместной деятельности;
-
принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
-
строить позитивные отношения в процессе учебной и познавательной деятельности;
-
корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
-
критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
-
предлагать альтернативное решение в конфликтной ситуации.
10. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
-
определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
-
высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
-
принимать решение в ходе диалога и согласовывать его с собеседником;
-
делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта.
Предметные результаты освоения учебного курса:
Выпускник научится:
Элементы теории множеств и математической логики
-
оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
-
приводить примеры и контрпримеры для подтверждения своих высказываний.
В повседневной жизни и при изучении других предметов:
-
использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.
Числа
-
Оперировать на базовом уровне понятиями: рациональное число, арифметический квадратный корень;
-
использовать свойства чисел и правила действий при выполнении вычислений;
-
выполнять округление рациональных чисел в соответствии с правилами;
-
оценивать значение квадратного корня из положительного целого числа;
-
распознавать рациональные и иррациональные числа;
-
сравнивать числа.
В повседневной жизни и при изучении других предметов:
-
оценивать результаты вычислений при решении практических задач;
-
выполнять сравнение чисел в реальных ситуациях;
-
составлять числовые выражения при решении практических задач и задач из других учебных предметов.
Тождественные преобразования
-
Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
-
выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
-
выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.
В повседневной жизни и при изучении других предметов:
-
понимать смысл записи числа в стандартном виде;
-
оперировать на базовом уровне понятием «стандартная запись числа».
Уравнения и неравенства
-
проверять справедливость числовых равенств и неравенств;
-
решать системы несложных линейных уравнений;
-
проверять, является ли данное число решением уравнения;
-
решать квадратные уравнения по формуле корней квадратного уравнения.
В повседневной жизни и при изучении других предметов:
-
составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.
Функции
-
Находить значение функции по заданному значению аргумента;
-
находить значение аргумента по заданному значению функции в несложных ситуациях;
-
определять положение точки по её координатам, координаты точки по её положению на координатной плоскости;
-
по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
-
строить график линейной функции;
-
проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
-
определять приближённые значения координат точки пересечения графиков функций.
В повседневной жизни и при изучении других предметов:
-
использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
-
использовать свойства линейной функции и ее график при решении задач из других учебных предметов.
Выпускник получит возможность научиться в 8 классе для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях
Элементы теории множеств и математической логики
-
Оперировать1 понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
-
изображать множества и отношение множеств с помощью кругов Эйлера;
-
определять принадлежность элемента множеству, объединению и пересечению множеств;
-
строить высказывания, отрицания высказываний.
В повседневной жизни и при изучении других предметов:
-
строить цепочки умозаключений на основе использования правил логики;
-
использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.
Числа
-
Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
-
понимать и объяснять смысл позиционной записи натурального числа;
-
выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;
-
выполнять округление рациональных чисел с заданной точностью;
-
сравнивать рациональные и иррациональные числа;
-
представлять рациональное число в виде десятичной дроби.
В повседневной жизни и при изучении других предметов:
-
применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
-
выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений.
Тождественные преобразования
-
Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
-
выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
-
выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
-
выделять квадрат суммы и разности одночленов;
-
раскладывать на множители квадратный трёхчлен;
-
выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
-
выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
-
выполнять преобразования выражений, содержащих квадратные корни;
-
выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни.
В повседневной жизни и при изучении других предметов:
-
выполнять преобразования и действия с числами, записанными в стандартном виде;
-
выполнять преобразования алгебраических выражений при решении задач других учебных предметов.
Уравнения и неравенства
-
Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения;
-
решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
-
решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
-
решать линейные уравнения с параметрами;
-
решать несложные квадратные уравнения с параметром;
-
решать несложные системы линейных уравнений с параметрами;
-
решать несложные уравнения в целых числах.
В повседневной жизни и при изучении других предметов:
-
составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений при решении задач других учебных предметов;
-
уметь интерпретировать полученный при решении уравнения или системы результат в контексте заданной реальной ситуации или прикладной задачи.
Функции
-
Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;
-
на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
-
составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
-
исследовать функцию по её графику;
-
находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции.
В повседневной жизни и при изучении других предметов:
-
иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
-
использовать свойства и график квадратичной функции при решении задач из других учебных предметов.
Содержание курса
Числа и вычисления (11ч)
Рациональные числа. Стандартный вид числа. Проценты. Действия с рациональными числами. Сравнение рациональных чисел. Нахождение процента от числа. Нахождение числа по данной величине его процента. Нахождение процентного отношения двух чисел. Модуль числа. Степень с натуральным показателем. Квадратный корень. Свойства степени. Свойства квадратного корня.
Выражения и преобразования (11ч)
Буквенные выражения. Область определения буквенного выражения. Разложение на множители многочлена. Сложение, вычитание и умножение многочленов. Формулы сокращенного умножения. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями. Преобразование рациональных выражений. Свойства квадратных корней и их применение в преобразования.
Уравнения и неравенства (7 ч)
Решение уравнения. Решение неравенства. Линейное уравнение. Линейное неравенство. Квадратное уравнение. Квадратное неравенство. Параметр. Уравнения с параметрами.
Функции (4 ч)
Линейная функция и ее свойства. Квадратичная функция и ее свойства.
Итоговая работа (1ч)
Календарно- тематическое планирование.
(1 час в неделю, 34 часа в год)
Числа и вычисления
11
1
Сравнение рациональных чисел
1
8.09
2
Действия с рациональными числами
1
15.09
3
Выполнение действий с числами, записанными в стандартном виде
1
22.09
4
Проценты
1
29.09
5
Основные задачи на проценты
1
6.10
6
Основные задачи на проценты
1
13.10
7
Противоположные числа. Модуль числа, геометрический смысл модуля.
1
20.10
8
Степень с натуральным показателем, вычисление значений выражений, содержащих степени
1
27.10
9
Степень с натуральным показателем, вычисление значений выражений, содержащих степени
1
10.11
10
Квадратный корень. Нахождение значений выражений, содержащих квадратный корень
1
17.11
11
Квадратный корень. Нахождение значений выражений, содержащих квадратный корень
1
24.11
Выражения и преобразования
11
12
Область определения буквенного выражения
1
1.12
13
Область определения буквенного выражения
1
8.12
14
Свойства степени с натуральным показателем, преобразование выражений, содержащих степени с натуральным показателем
1
15.12
15
Сложение, вычитание и умножение многочленов, формулы сокращенного умножения, преобразование целых выражений
1
22.12
16
Разложение многочленов на множители
1
12.01
17
Разложение многочленов на множители
1
19.01
18
Алгебраические дроби. Сокращение дробей. Действия с алгебраическими дробями
1
26.01
19
Рациональные выражения и их преобразования
1
2.02
20
Рациональные выражения и их преобразования
1
9.02
21
Свойства квадратных корней и их применение в преобразованиях
1
16.02
22
Свойства квадратных корней и их применение в преобразованиях
1
23.02
Уравнения и неравенства
7
23
Линейное уравнение
1
2.03
24
Линейное неравенство
1
9.03
25
Квадратное уравнение
1
16.03
26
Системы неравенств
1
23.03
27
Системы неравенств
1
6.04
28
Уравнения с параметрами
1
13.04
29
Уравнения с параметрами
1
20.04
Функции
4
30
Линейная функция и ее свойства
1
27.04
31
Линейная функция и ее свойства
1
4.05
32
Функция вида у= √х и ее свойства
1
11.05
33
Функции у=х2 , у=х3 и их свойства
1
18.05
34
Итоговое занятие
1
25.05
И т о г о
34
1</<br>