7


  • Учителю
  • Рабочая программа по геометрии для 8 класса

Рабочая программа по геометрии для 8 класса

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

I. Пояснительная записка

Рабочая программа по геометрии для учащихся 8 класса составлена в соответствии с Федеральным компонентом государственного стандарта основного общего образования (приказ №1089 05.03.2004 г, ред. от 19.10.09 г, с изменениями от 31.01.12 г) на основе Программы по геометрии для 7-9 классов. Авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина. М.: Просвещение, 2014 г.

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационноемком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Геометрия - один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека.

В ходе освоения содержания курса учащиеся получают возможность:

- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

- развить логическое мышление и речь - умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Программа направлена на достижение следующих целей:

- овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;

- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

- воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

- развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

Задачи обучения:

- научить пользоваться геометрическим языком для описания предметов;

- начать изучение многоугольников и их свойств, научить находить их площади;

- ввести теорему Пифагора и научить применять её при решении прямоугольных треугольников;

- ввести тригонометрические понятия синус, косинус и тангенс угла в прямоугольном треугольнике научить применять эти понятия при решении прямоугольных треугольников;

- ввести понятие подобия и признаки подобия треугольников, научить решать задачи на применение признаков подобия;

- ознакомить с понятием касательной к окружности.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Программа Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др. по геометрии для 8 класса рассчитана на 68 часов. В соответствии с учебным планом МАОУ «Гимназия №3 имени Джалиля Киекбаева» (утвержден приказом № 276 от 01.09.15 г) на изучение геометрии в 8 классе отводится 2 часа в неделю.

II. Основное содержание предмета

1. Четырехугольники (14 ч)

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четырехугольников - параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

2. Площади фигур (14 ч)

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Цель: расширить и углубить полученные в 5-6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии - теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

3. Подобные треугольники (19 ч)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии - синус, косинус и тангенс острого угла прямоугольного треугольника.

4. Окружность (17 ч)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

5. Повторение (4 ч).

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.


III. Требования к уровню подготовки учащихся по данной программе


В результате изучения данного курса учащиеся должны :

знать/понимать

- существо понятия математического доказательства; примеры доказательств;

- существо понятия алгоритма; примеры алгоритмов;

- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

- как потребности практики привели математическую науку к необходимости расширения понятия числа;

- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

- пользоваться языком геометрии для описания предметов окружающего мира;

- распознавать геометрические фигуры, различать их взаимное расположение;

- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

- в простейших случаях строить сечения и развертки пространственных тел;

- проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

- вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

- решать простейшие планиметрические задачи в пространстве.


IV. Оценка достижения планируемых результатов


1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

- работа выполнена полностью;

- в логических рассуждениях и обосновании решения нет пробелов и ошибок;

- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

- допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

-допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся.

Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

- отвечал самостоятельно, без наводящих вопросов учителя;

- возможны одна - две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- в изложении материала допущены небольшие пробелы, не исказившее математическое содержание ответа;

- допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;

- обнаружено незнание учеником большей или наиболее важной части учебного материала;

- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

V. Тематическое планирование


Тема урока

Количес

тво часов

Дата по плану

Дата фактическая


При

меча

ние

Глава V. Четырехугольники 14 часов

1


Многоугольники

Выпуклый многоугольник

2

08.09

2

Выпуклый многоугольник


08.09

3

Параллелограмм

1

15.09

4

Признаки параллелограмма

2

15.09

5

Признаки параллелограмма


22.09

6

Трапеция

2

22.09

7

Трапеция


29.09

8

Прямоугольник

2

29.09

9

Прямоугольник


06.10

10

Ромб и квадрат

2

06.10

11

Ромб и квадрат


20.10

12

Осевая и центральная симметрия


20.10

13

Повторение. Четырехугольники

1

27.10

14

Контрольная работа № 1 по теме

«Четырехугольники»

1

27.10

Глава VI. Площади фигур 14 часов

15


Работа над ошибками.

Понятие площади многоугольника

2

03.11

16

Площадь квадрата, прямоугольника

1

03.11

17

Площадь параллелограмма

2

10.11

18

Площадь параллелограмма


10.11

19

Площадь треугольника

2

17.11

20

Площадь треугольника


17.11

21

Площадь трапеции

2

01.12

22

Площадь трапеции


01.12

23

Теорема Пифагора

2

08.12

24

Теорема Пифагора


08.12

25

Теорема, обратная теореме Пифагора

1

15.12

26

Повторение. Площади фигур

2

15.12

27

Повторение. Площади фигур


22.12

28

Контрольная работа № 2 по теме

«Площади фигур».

1

22.12

Глава VII. Подобные треугольники 19 часов

29


Работа над ошибками.

Определение подобных треугольников

2

29.12

30

Определение подобных треугольников


29.12

31


Первый признак подобия треугольников

2

12.01

32

Первый признак подобия треугольников


12.01

33

II признак подобия треугольников

1

19.01

34

III признак подобия треугольников

2

19.01

35

Решение задач по теме признаки подобия треугольников


26.01

36

Контрольная работа № 3 по теме

«Признаки подобия треугольников»

1

26.01

37


Работа над ошибками.

Средняя линия треугольника

2

02.02

38

Средняя линия треугольника


02.02

39


Пропорциональные отрезки в прямоугольном треугольнике

2

09.02

40

Пропорциональные отрезки в прямоугольном треугольнике


09.02

41

Задачи на построение

2

16.02

42

Задачи на построение


16.02

43

Измерительные работы на местности

1

01.03

44

Синус, косинус, тангенс острого прямоугольного треугольника

1

01.03

45

Значение синуса, косинуса и тангенса для углов 300 ,450 600

1

15.03

46

Повторение. Прямоугольный треугольник

1

15.03

47

Контрольная работа № 4 по теме

«Прямоугольный треугольник».

1

22.03

Глава VIII. Окружность 17 часов

48

Работа над ошибками.

Взаимное расположение прямой и окружности

1

22.03

49

Касательная к окружности

2

29.03

50

Касательная к окружности


29.03

51

Градусная мера дуги окружности

1

05.04

52

Теорема о вписанном угле

2

05.04

53

Теорема о вписанном угле


12.04

54

Центральные и вписанные углы

1

12.04

55

Свойства биссектрисы угла

1

19.04

56

Свойства серединного перпендикуляра к отрезку

1

19.04

57


Теорема о пересечении высот треугольника

2

26.04

58

Теорема о пересечении высот треугольника


26.04

59

Вписанная окружность

2

03.05

60

Вписанная окружность


03.05

61

Описанная окружность

2

10.05

62

Описанная окружность


10.05

63

Повторение. Окружность

1

17.05

64

Контрольная работа № 5 по теме

«Окружность»

1

17.05

Повторение 4 часа

65

Работа над ошибками. Четырехугольники

4

24.05

66

Площади фигур


24.05

67

Прямоугольный треугольник


31.05

68

Обобщающее повторение


31.05








VI. Список литературы


1. Геометрия 7 - 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2009.

2. Математика в таблицах. 5-11 классы. Справочные материалы. Москва«АСТ. Астрель»2010

3. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 - 11 классов. - М.: Просвещение

4. С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. - М.: Просвещение, 2001.

5. Зив, Б. Г. Дидактические материалы по геометрии для 8 кл. [Текст] / Б. Г. Зив. - М.: Просвещение, 2009.

6. Задачи по геометрии 7-11 класс под редакцией Мейлера В.М.

7. «Дидактические карточки - задания по геометрии 8 класс» Т.М.Мищенко

8. Энциклопедия по геометрии


12




 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал