- Учителю
- Рабочая программа для 5 класса ФГОС
Рабочая программа для 5 класса ФГОС
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа № 1 с. Серафимовский
муниципального района Туймазинский район Республики Башкортостан
РАССМОТРЕНО
на заседании МО
протокол №1
_________/Н.В.Швайковская
«_26_»_августа_2016г.
СОГЛАСОВАНО
Зам.директора по УВР
_________/А.И.Хадыева
«_29_»_августа_2016г.
УТВЕРЖДАЮ
Директор МБОУ СОШ №1
с. Серафимовский
___________/ У.Т. Садыков
Приказ №164 от «30»августа2016г.
Рабочая программа по математике
за курс основного общего образования,
5 - 9 классы на 2016 - 2021 учебные годы
составлена на основе авторской программы основного общего образования
по математике ( авторы: И.И.Зубарева, А.Г.Мордкович).
Издательство «Мнемозима», г. Москва, 2011 год.
Швайковской Натальи Витальевны,
учителя математики
первой квалификационной категории
2016
1. Планируемые результаты освоения учебного предмета.
Личностные универсальные учебные действия
Выпускник научится:
• ясно, точно, грамотно излагать свои мысли в устной и
письменной речи, понимать смысл поставленной задачи, выстраивать
аргументацию, приводить примеры и контр примеры;
• критичность мышления, умение распознавать логически некорректные
высказывания, отличать гипотезу от факта;
• представление о математической науке как сфере человеческой
деятельности, об этапах ее развития, о ее значимости для развития
цивилизации;
•креативность мышления, инициатива, находчивость, активность при
решении математических задач;
• контролировать процесс и результат учебной математической
деятельности;
•способность к эмоциональному восприятию математических объектов,
задач, решений, рассуждений;
• вести диалог на основе равноправных отношений и взаимного уважения и принятия; умение конструктивно разрешать конфликты;
• готовность к выбору профильного образования.
Выпускник получит возможность для формирования:
• выраженной устойчивой учебно-познавательной мотивации и интереса к учению;
• готовности к самообразованию.
Регулятивные универсальные учебные действия
Выпускник научится:
• целеполаганию, включая постановку новых целей, преобразование практической задачи в познавательную;
• самостоятельно анализировать условия достижения цели на основе учёта выделенных учителем ориентиров действия в новом учебном материале;
• планировать пути достижения целей;
• устанавливать целевые приоритеты;
• уметь самостоятельно контролировать своё время и управлять им;
• принимать решения в проблемной ситуации на основе переговоров;
• адекватно самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как в конце действия, так и по ходу его реализации;
• основам прогнозирования как предвидения будущих событий и развития процесса.
Выпускник получит возможность научиться:
• самостоятельно ставить новые учебные цели и задачи;
• построению жизненных планов во временной перспективе;
• при планировании достижения целей самостоятельно, полно и адекватно учитывать условия и средства их достижения;
• выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ;
• основам саморегуляции в учебной и познавательной деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей;
• осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;
• адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи;
• адекватно оценивать свои возможности достижения цели определённой сложности в различных сферах самостоятельной деятельности;
• основам саморегуляции эмоциональных состояний;
• прилагать волевые усилия и преодолевать трудности и препятствия на пути достижения целей.
Коммуникативные универсальные учебные действия
Выпускник научится:
• учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
• формулировать собственное мнение и позицию, аргументировать и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;
• устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и делать выбор;
• аргументировать свою точку зрения, спорить и отстаивать свою позицию не враждебным для оппонентов образом;
• задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнёром;
• осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь;
• адекватно использовать речь для планирования и регуляции своей деятельности;
• адекватно использовать речевые средства для решения различных коммуникативных задач; владеть устной и письменной речью; строить монологическое контекстное высказывание;
• организовывать и планировать учебное сотрудничество с учителем и сверстниками, определять цели и функции участников, способы взаимодействия; планировать общие способы работы;
• осуществлять контроль, коррекцию, оценку действий партнёра, уметь убеждать;
• работать в группе - устанавливать рабочие отношения, эффективно сотрудничать и способствовать продуктивной кооперации; интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми;
• основам коммуникативной рефлексии;
• использовать адекватные языковые средства для отображения своих чувств, мыслей, мотивов и потребностей;
• отображать в речи (описание, объяснение) содержание совершаемых действий как в форме громкой социализированной речи, так и в форме внутренней речи.
Выпускник получит возможность научиться:
• учитывать и координировать отличные от собственной позиции других людей в сотрудничестве;
• учитывать разные мнения и интересы и обосновывать собственную позицию;
• понимать относительность мнений и подходов к решению проблемы;
• продуктивно разрешать конфликты на основе учёта интересов и позиций всех участников, поиска и оценки альтернативных способов разрешения конфликтов; договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов;
• брать на себя инициативу в организации совместного действия (деловое лидерство);
• оказывать поддержку и содействие тем, от кого зависит достижение цели в совместной деятельности;
• осуществлять коммуникативную рефлексию как осознание оснований собственных действий и действий партнёра;
• в процессе коммуникации достаточно точно, последовательно и полно передавать партнёру необходимую информацию как ориентир для построения действия;
• вступать в диалог, а также участвовать в коллективном обсуждении проблем, участвовать в дискуссии и аргументировать свою позицию, владеть монологической и диалогической формами речи в соответствии с грамматическими и синтаксическими нормами родного языка;
• следовать морально-этическим и психологическим принципам общения и сотрудничества на основе уважительного отношения к партнёрам, внимания к личности другого, адекватного межличностного восприятия, готовности адекватно реагировать на нужды других, в частности оказывать помощь и эмоциональную поддержку партнёрам в процессе достижения общей цели совместной деятельности;
• устраивать эффективные групповые обсуждения и обеспечивать обмен знаниями между членами группы для принятия эффективных совместных решений;
• в совместной деятельности чётко формулировать цели группы и позволять её участникам проявлять собственную энергию для достижения этих целей.
Познавательные универсальные учебные действия
Выпускник научится:
• основам реализации проектно-исследовательской деятельности;
• проводить наблюдение и эксперимент под руководством учителя;
• осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
• создавать и преобразовывать модели и схемы для решения задач;
• осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
• давать определение понятиям;
• устанавливать причинно-следственные связи;
• осуществлять логическую операцию установления родовидовых отношений, ограничение понятия;
• обобщать понятия - осуществлять логическую операцию перехода от видовых признаков к родовому понятию, от понятия с меньшим объёмом к понятию с большим объёмом;
• осуществлять сравнение и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
• строить логическое рассуждение, включающее установление причинно-следственных связей;
• объяснять явления, процессы, связи и отношения, выявляемые в ходе исследования;
• основам ознакомительного, изучающего, усваивающего и поискового чтения;
• структурировать тексты, включая умение выделять главное и второстепенное, главную идею текста, выстраивать последовательность описываемых событий;
Выпускник получит возможность научиться:
• основам рефлексивного чтения;
• ставить проблему, аргументировать её актуальность;
• самостоятельно проводить исследование на основе применения методов наблюдения и эксперимента;
• выдвигать гипотезы о связях и закономерностях событий, процессов, объектов;
• организовывать исследование с целью проверки гипотез;
• делать умозаключения (индуктивное и по аналогии) и выводы на основе аргументации.
Анализ информации, математическая обработка данных в исследовании
Выпускник научится:
• вводить результаты измерений и другие цифровые данные для их обработки, в том числе статистической и визуализации;
• строить математические модели;
• проводить эксперименты и исследования в виртуальных лабораториях по математике.
Выпускник получит возможность научиться:
• проводить естественнонаучные и социальные измерения, вводить результаты измерений и других цифровых данных и обрабатывать их, в том числе статистически и с помощью визуализации;
• анализировать результаты своей деятельности и затрачиваемых ресурсов.
Коммуникация и социальное взаимодействие
Выпускник научится:
• выступать с аудио, видеоподдержкой, включая выступление перед дистанционной аудиторией;
• осуществлять образовательное взаимодействие в информационном пространстве образовательного учреждения (получение и выполнение заданий, получение комментариев, совершенствование своей работы, формирование портфолио);
Основы учебно-исследовательской и проектной деятельности
Выпускник научится:
• планировать и выполнять учебное исследование и учебный проект, используя оборудование, модели, методы и приёмы, адекватные исследуемой проблеме;
• выбирать и использовать методы, релевантные рассматриваемой проблеме;
• распознавать и ставить вопросы, ответы на которые могут быть получены путём научного исследования, отбирать адекватные методы исследования, формулировать вытекающие из исследования выводы;
• использовать такие математические методы и приёмы, как абстракция и идеализация, доказательство, доказательство от противного, доказательство по аналогии, опровержение, контр пример, индуктивные и дедуктивные рассуждения, построение и исполнение алгоритма;
• использовать такие естественно-научные методы и приёмы, как наблюдение, постановка проблемы, выдвижение «хорошей гипотезы», эксперимент, моделирование, использование математических моделей, теоретическое обоснование, установление границ применимости модели/теории;
• ясно, логично и точно излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме;
• отличать факты от суждений, мнений и оценок, критически относиться к суждениям, мнениям, оценкам, реконструировать их основания;
• видеть и комментировать связь научного знания и ценностных установок, моральных суждений при получении, распространении и применении научного знания.
Выпускник получит возможность научиться:
• самостоятельно задумывать, планировать и выполнять учебное исследование, учебный и социальный проект;
• использовать догадку, озарение, интуицию;
• использовать такие математические методы и приёмы, как перебор логических возможностей, математическое моделирование;
• использовать такие естественнонаучные методы и приёмы, как абстрагирование от привходящих факторов, проверка на совместимость с другими известными фактами;
• целенаправленно и осознанно развивать свои коммуникативные способности, осваивать новые языковые средства;
• осознавать свою ответственность за достоверность полученных знаний, за качество выполненного проекта.
Работа с текстом: поиск информации и понимание прочитанного
Выпускник научится:
• ориентироваться в содержании текста и понимать его целостный смысл:
• находить в тексте требуемую информацию
Работа с текстом: оценка информации
Выпускник научится:
• откликаться на содержание текста:
- связывать информацию, обнаруженную в тексте, со знаниями из других источников;
Выпускник получит возможность научиться:
• находить способы проверки противоречивой информации;
• определять достоверную информацию в случае наличия противоречивой или конфликтной ситуации.
Предметные результаты
Натуральные числа. Дроби. Рациональные числа
Выпускник научится:
• понимать особенности десятичной системы счисления;
• оперировать понятиями, связанными с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
Выпускник получит возможность:
• познакомиться с позиционными системами счисления с основаниями, отличными от 10;
• углубить и развить представления о натуральных числах и свойствах делимости;
• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
Выпускник научится:
• использовать начальные представления о множестве действительных чисел;
• оперировать понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки
Выпускник научится:
• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения
Выпускник научится:
• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами;
• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
• выполнять разложение многочленов на множители.
Выпускник получит возможность научиться:
• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов; применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
Уравнения
Выпускник научится:
• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Выпускник получит возможность:
• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Неравенства
Выпускник научится:
• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
• применять аппарат неравенств для решения задач из различных разделов курса.
Выпускник получит возможность научиться:
• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
Основные понятия. Числовые функции
Выпускник научится:
• понимать и использовать функциональные понятия и язык (термины, символические обозначения);
• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Выпускник получит возможность научиться:
• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Числовые последовательности
Выпускник научится:
• понимать и использовать язык последовательностей (термины, символические обозначения);
• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Выпускник получит возможность научиться:
• решать комбинированные задачи с применением формул n-го члена и суммы первых nчленов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.
Описательная статистика
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
Случайные события и вероятность
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Наглядная геометрия
Выпускник научится:
• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
• строить развёртки куба и прямоугольного параллелепипеда;
• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры, и наоборот;
• вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
• углубить и развить представления о пространственных геометрических фигурах;
• научиться применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Выпускник научится:
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
• решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек и методом подобия;
• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
• приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
• вычислять длину окружности, длину дуги окружности;
• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность научиться:
• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
• использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
• овладеть координатным методом решения задач на вычисления и доказательства;
• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы
Выпускник научится:
• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
• овладеть векторным методом для решения задач на вычисления и доказательства;
• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».
Достижение планируемых результатов, отнесенных к блоку «Выпускник научится», выносится на итоговую оценку, которая осуществляется как в ходе обучения, так и в конце обучения. Оценка достижения планируемых результатов этого блока на уровне, характеризующем исполнительскую компетентность учащихся, ведется с помощью заданий базового уровня, а на уровне действий, составляющих зону ближайшего развития большинства учащихся, - с помощью заданий повышенного уровня.
В блоках «Выпускник получит возможность научиться» приводятся планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих понимание опорного учебного материала, или выступающих как пропедевтика для дальнейшего изучения данного предмета. Частично задания, ориентированные на оценку достижения планируемых результатов из блока «Выпускник получит возможность научиться» включаются в материалы итогового контроля. Основные цели такого включения - предоставить возможность обучающимся продемонстрировать овладение более высокими (по сравнению с базовым) уровнями достижений и выявить динамику роста численности группы наиболее подготовленных учащихся.
2.Содержание учебного курса
Арифметика
(226 ч)
Натуральные числа. Десятичная система счисления. Римская нумерация. Арифметические действия над натуральными числами. Степень с натуральным показателем.
Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Деление с остатком.
Дроби. Обыкновенная дробь. Основное свойство дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.
Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Рациональные числа. Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Степень с целым показателем.
Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный.
Действительные числа. Квадратный корень из числа. Корень третьей степени. Понятие о корне n-ой степени из числа1. Нахождение приближенного значения корня с помощью калькулятора. Запись корней с помощью степени с дробным показателем.
Понятие об иррациональном числе. Иррациональность числа. Десятичные приближения иррациональных чисел.
Алгебра (359 ч)
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений.
Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.
Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.
Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.
Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения, Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложения на множители.
Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.
Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств.
Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.
Числовые последовательности. Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.
Числовые функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.
Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.
Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост; числовые функции, описывающие эти процессы.
Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.
Координаты. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.
Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.
Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.
Геометрия (243 ч)
Начальные понятия и теоремы геометрии. Возникновение геометрии из практики. Геометрические фигуры и тела. Равенство в геометрии. Точка, прямая и плоскость. Понятие о геометрическом месте точек. Расстояние. Отрезок, луч. Ломаная. Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства. Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой. Многоугольники. Окружность и круг.
Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Примеры сечений. Примеры разверток.
Треугольник. Прямоугольные, остроугольные, и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.
Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинам сторон и углов треугольника.
Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.
Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника.
Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.
Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.
Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.
Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.
Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.
Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число ; длина дуги. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности. Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника. Площадь круга и площадь сектора. Связь между площадями подобных фигур. Объем тела. Формулы объема прямоугольного параллелепипеда, куба, шара, цилиндра и конуса.
Векторы. Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение, разложение, скалярное произведение. Угол между векторами.
Геометрические преобразования. Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур.
Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы, деление отрезка на n равных частей.
Правильные многогранники.
Элементы логики, комбинаторики,
статистики и теории вероятностей
(22 ч)
Доказательство. Определения, доказательства, аксиомы и теоремы; следствия. Необходимые и достаточные условия. Контр пример. Доказательство от противного. Прямая и обратная теоремы.
Понятие об аксиоматике и аксиоматическом построении геометрии. Пятый постулат Эвклида и его история.
Множества и комбинаторика. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера.
Примеры решения комбинаторных задач: перебор вариантов, правило умножения.
Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки.
Понятие и примеры случайных событий.
Вероятность. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
Содержание учебного курса по математике для 5 класса
5 часов в неделю, всего 170 часов.
Контрольных работ 12
Повторение за курс начальной школы (3 часа). Действия с многозначными числами. Числовые и буквенные выражения. Действия с величинами. Решение уравнений и задач.
Контрольная работа: «Входная контрольная работа»
«Натуральные числа» (45 часов) основывается на повторении основных понятий математики из курса начальной школы, на формировании представлений о целостности и непрерывности курса математики начальной школы. Систематизирует знания о десятичной системе исчисления, о округлении натурального числа, о координатном луче, об уравнениях. Вводит понятие числового выражения, буквенного выражения и его числового значения. Закрепляет и развивает навыки сложения, вычитания, умножения и деления натуральных чисел. Продолжает формирование представлений о прямой, отрезке, ломанной, луче, прямоугольнике. Формирует умение сравнивать отрезки, находить длины отрезков, составлять формулы по условию задачи.
Контрольная работа: №1 «Десятичная система счисления. Первые представления о математическом языке.» №2 «Вычисления с многозначными числами. Простейшие задачи» №3 «Упрощение выражений. Решение уравнений. Прямоугольник.»
«Обыкновенные дроби» (33 часа) продолжает формирование представлений об обыкновенных дробях, правильных дробях, о неправильных дробях, о смешанных числах, о круге и окружности, о их радиусах и диаметрах. Закрепляет и развивает навыки отыскания части от целого и целого по его части, сложения и вычитания обыкновенных дробей и смешанных чисел, умножением и делением обыкновенных дробей на натуральное число, применение основного свойства дроби для сокращения дробей и приведения к новому знаменателю.
Контрольная работа: №4 «Обыкновенные дроби» №5«Действия с обыкновенными дробями и смешанными числами.»
«Геометрические фигуры» (22 часа) включает в себя формирование представлений о развернутом угле, о биссектрисе угла, о геометрической фигуре треугольник, о расстоянии между двумя точками, о расстоянии от точки до прямой. Формирует умение нахождения расстояния между двумя точками, применяя масштаб; построения серединного перпендикуляра к отрезку; решения геометрических задач на свойство биссектрисы угла. Помогает овладеть умением сравнения и измерения углов, построения биссектрисы угла и построения различных видов треугольников. Отрабатывает навыки нахождения площади треугольника по формуле, применения свойства углов треугольника при решении задач на построение треугольника.
Контрольная работа:№6 «Геометрические фигуры. Арифметическая задача на части»
«Десятичные дроби» (42 часа), которая формирует представление о десятичной дроби, о степени числа, о проценте. Здесь происходит формирование умений чтения и записи десятичных дробей, перевода величин в другие единицы измерения, пользоваться микрокалькулятором. Учащиеся овладевают навыками умножения, деления, сложения и вычитания десятичных дробей, решение примеров на все арифметические действия, решение задач на проценты.
Контрольная работа:№7«Сложение и вычитание десятичных дробей. Перевод величин. Составление математической модели», №8«Умножение и деление десятичных дробей. Перевод величин. Арифметическая задача на части», №9«Проценты. Задачи на отыскание процента»
«Геометрические тела» (10 часов), которая формирует представление о прямоугольном параллелепипеде, о площади поверхности, об объеме. Отрабатывает умение построения развертки прямоугольного параллелепипеда, и нахождения объема прямоугольного параллелепипеда.
Контрольная работа:№10«Геометрические тела»
«Введение в вероятность» (4 часа), которая формирует представление о достоверных, невозможных, случайных событиях. Отрабатывает умение составлять дерево возможных вариантов, и решения простейших комбинаторных задач.
Повторение (11 часов)
Контрольная работа: «Итоговая контрольная работа за 5 класс»
Этнокультурный региональный компонент
Региональный компонент является важным составляющим содержания современного школьного образования. В числе основных его задач -приобщение подрастающего поколения к национальной культуре, духовным и нравственно-этическим ценностям своего народа, формирование интересов к родному языку, истории, воспитание культуры межнациональных отношений. Реализация регионального компонента на уроках математики представляется достаточно сложной. Но можно внедрить его в интегрированных уроках и во внеклассной работе. В 5 классе при изучении тем «Решение текстовых задач арифметическим способом», решение текстовых задач по теме «Процентные вычисления в жизненных ситуациях».
Содержание учебного курса по математике для 6 класса
5 часов в неделю, всего 170 часов.
Контрольных работ
Содержание
Повторение за курс 5-ого класса (5ч).
Повторить материал, пройденный в курсе 5-ого класса.
Основная цель:
-
повторить арифметические действия с десятичными дробями;
-
вспомнить умения и навыки по решению уравнений;
-
повторить решение задач на части, на движение;
-
повторить понятие «процент», решение задач на проценты.
Положительные и отрицательные числа. Координаты (58ч).
Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами.
Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный.
Поворот, осевая и центральная симметрии. Координаты, координатная плоскость. Числовые промежутки.
Основная цель:
-
выработать навыка чтения и записи отрицательных чисел;
-
навыки по сравнению отрицательных чисел, положительных и отрицательных чисел;
-
умение складывать, вычитать, умножать и делить положительные и отрицательные числа;
-
арифметические действия с отрицательными числами;
-
знакомство с понятием абсолютная величина числа;
-
знакомство с геометрическими преобразованиями: поворотом, осевой и центральной симметриями;
-
навыки по нахождению координат числа на координатной плоскости.
Преобразование буквенных выражений (36ч).
Упрощение выражений, раскрытие скобок (простейшие случаи). Алгоритм решения уравнения переносом слагаемых из одной части уравнения в другую.
Решение текстовых задач алгебраическим методом (выделение трёх различных этапов математического моделирования).
Решение двух основных задач на дроби.
Наглядные представления об окружности, круге, шаре, сфере.
Основная цель:
-
отработка умений и навыков по упрощению алгебраических выражений (сложение и вычитание одночленов);
-
умение раскрытия скобок;
-
развитие навыков по решению уравнений переносом слагаемых из одной части уравнения в другую;
-
знакомство учащихся с решением текстовых задач алгебраическим способом;
-
навыки по решению двух типов задач на дроби;
-
знакомство с геометрическими фигурами: окружность, круг, шар, сфера.
Делимость натуральных чисел (32ч).
Делители и кратные. Делимость произведения, суммы и разности чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное.
Основная цель:
-
знакомство с понятиями делители и кратные;
-
отработка умений и навыков по признакам делимости;
-
умение раскладывать числа на простые множители;
-
навыки по нахождению наименьшего общего кратного и наибольшего общего делителя.
Математика вокруг нас (30ч).
Отношения двух чисел. Пропорциональность величин. Решение задач с помощью пропорции. Первые представления о вероятности. Благоприятные и неблагоприятные исходы. Подсчёт вероятности события в простейших случаях.
Основная цель:
-
знакомство с понятиями: отношение чисел, пропорциональность величин;
-
умение решать задачи с помощью пропорций;
-
знакомство с понятием «вероятность», с подсчётом вероятности;
-
отработка умений и навыков по решению задач различного типа.
Итоговое повторение (9)
Содержание учебного предмета курса 7кл
АЛГЕБРА
3 часа в неделю, всего 102 часа.
Повторение курса 6 класса (5ч.) Обыкновенные дроби. Десятичные дроби. Положительные и отрицательные числа. Преобразование выражений. Решение уравнений.
Математический язык. Математическая модель (11ч). Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и математической модели. Линейные уравнения с одной переменной. Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.
Линейная функция (10ч). Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки М (a;b) в прямоугольной системе координат. Линейное уравнение с двумя переменными. Решение уравнения ax + bx + c = 0. График уравнения. Алгоритм построения графика уравнения ax + bx + c = 0. Линейная функция. Независимая переменная (аргумент). Зависимая переменная. График линейной функции. Наибольшее и наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции. Линейная функция y = kx и её график. Взаимное расположение графиков функций.
Системы двух линейных уравнений с двумя переменными (12ч). Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки. Метод алгебраического сложения. Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).
Степень с натуральным показателем и её свойства (6ч). Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.
Одночлены. Операции над одночленами (9ч).Одночлен. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены. Сложение одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.
Многочлены. Операции над многочленами (15ч). Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных членов многочлена. Стандартный вид многочлена. Сложение, вычитание, умножение многочленов. Умножение многочлена на одночлен. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формулы суммы кубов и разности кубов. Деление многочлена на одночлен.
Разложение многочленов на множители (18ч). Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Метод выделения полного квадрата. Понятие алгебраической дроби. Сокращение алгебраической дроби. Тождество. Тождественно равные выражения. Тождественные преобразования.
Функция y = x2 (9ч).Функция y = x2, её свойства и график. Функция y = -x2, еёсвойства и график. Графическое решение уравнений. Чтение графика функции. Область определения функции. Первое представление о непрерывных функциях. Точка разрыва. Разъяснение смысла записи y = f(x). Функциональная символика.
Итоговое повторение (8ч) Линейная функция. Системы линейных уравнений с двумя переменными. Степень. Одночлены. Многочлены. Формулы сокращенного умножения. Разложение многочленов на множители.
ГЕОМЕТРИЯ 7
2 часа в неделю, всего 68 часов
1. Начальные геометрические сведения (11 часов)
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Основная цель - систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.
Контрольных работ: 1
2. Треугольники (18 часов)
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Основная цель - ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач - на построение с помощью циркуля и линейки.
Контрольных работ: 1
3. Параллельные прямые (12 часов)
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Основная цель - ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.
Контрольных работ: 1
4. Соотношения между сторонами и углами треугольника(18 часов)
Сумма углов треугольника. Соотношение между сторонамии углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Основная цель - рассмотреть новые интересные и важные свойства треугольников.
Контрольных работ: 2
5. Повторение. Решение задач (9 ч.)
Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе.
Содержание тем учебного курса 8 кл.
АЛГЕБРА
3 часа в неделю, всего 102 часа
Повторение материала 7 класса(4 часа).
Степень и её свойства. Одночлены и действия над ними. Многочлены и действия над ними. Формулы сокращённого умножения.
Алгебраические дроби (21 час).
Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Рациональное выражение. Рациональное уравнение. Решение рациональных уравнений (первые представления). Степень с рациональным показателем.
Функция y=. Свойства квадратного корня (18 часов).
Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Функция y=, её свойства и график. Выпуклость функции. Область значений функции. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа.
Квадратичная функция. Функция у= (18 часов).
Квадратичная функция, её свойства и график. Гипербола. Асимптота. Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций. Графическое решение квадратных уравнений.
Квадратные уравнения (21 час).
Квадратное уравнение. Приведенное (неприведенное) квадратное уравнение. Полное (неполное) квадратное уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата. Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления). Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной.
Рациональные уравнения как математические модели реальных ситуаций. Частные случаи формулы корней квадратного уравнения. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Иррациональное уравнение. Метод возведения в квадрат.
Неравенства (15 часов).
Свойства числовых неравенств. Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства. Квадратное неравенство. Алгоритм решения квадратного неравенства. Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств).
Приближенные значения действительных чисел, погрешность приближения, приближение по недостатку и по избытку. Стандартный вид числа.
Итоговое повторение (10 часов).
Квадратный корень и его свойства. Квадратичная функция. Функция y=. Квадратные уравнения. Неравенства.
ГЕОМЕТРИЯ 8
2 часа в неделю, всего 68 часов
1. Четырехугольники (14 часов)
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Основная цель - изучить наиболее важные виды четырехугольников - параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Контрольных работ: 1
2. Площадь (14 часов)
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Основная цель - расширить и углубить полученные в 5-6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии - теорему Пифагора.
Контрольных работ: 1
3. Подобные треугольники (19 часов)
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Основная цель - ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Контрольных работ: 2
4. Окружность (16 часов)
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Основная цель - расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.
Контрольных работ: 1
5. Повторение. Решение задач (6 часов)
Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 8 классе.
Содержание тем учебного курса 9 класс
АЛГЕБРА
3 часа в неделю, всего 102 часа
1.Повторение курса 8кл (4ч)
2.Неравенства и их системы (17ч)
Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования, метод интервалов. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства.
Системы линейных неравенств, частное и общее решение системы неравенств.
Контрольных работ-1
3. Системы уравнений((13)
Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные преобразования, график уравнения, система уравнений, решение системы уравнений.
Метод подстановки, метод алгебраического сложения, метод введения новых переменных, равносильные системы уравнений, алгоритм метода подстановки. Составление математической модели, система двух нелинейных уравнений, работа с составленной моделью, применение всех методов решения системы уравнений.
Контрольных работ-1
4. Числовые функции (26ч).
Функция, независимая и зависимая переменная, область определения и множество значений функции, кусочно-заданная функция.
Способы задания функции, график функции, аналитический, графический, табличный, словесный.
Возрастающая и убывающая на множестве, монотонная функция, исследование на монотонность, ограниченная снизу и сверху на множестве, ограниченная функция, наименьшее наибольшее значение на множестве, непрерывная функция, выпуклая вверх или вниз, элементарные функции.
Четная функция, нечетная функция, симметричное множество, алгоритм исследования функции на четность, график нечетной функции, график четной функции.
Степенная функция с натуральным показателем, свойства степенной функции с натуральным показателем, график степенной функции с четным показателем, график степенной функции с нечетным показателем, кубическая парабола, решение уравнений графически.
Степенная функция с отрицательным целым показателем, свойства степенной функции с отрицательным целым показателем, график степенной функции с четным отрицательным целым показателем, график степенной функции с нечетным отрицательным целым показателем, решение уравнений графически.
5.Прогрессии (17 ч)
Числовая последовательность, способы задания, аналитическое задание, словесное задание, рекуррентное задание, свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность.
Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов арифметической прогрессии, среднее арифметическое, характеристическое свойство арифметической прогрессии.
Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, показательная функция, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.
6.Элементы комбинаторики, статистики и теории вероятностей (12ч)
Всевозможные комбинации, комбинаторные задачи, дерево возможных вариантов, правило умножения.
События достоверные, невозможные, случайные; классическая вероятностная схема, классическое определение вероятности.
Вариант, многоугольник распределения данных, кривая нормального распределения.
Статистические характеристики данных: мода, медиана, среднее арифметическое, варианта , чистота и.т.д.
6. Повторение (13ч)
ГЕОМЕТРИЯ
9 класс
2 часа в неделю, всего 68 часов
1. Векторы. Метод координат (18 часов)
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Основная цель - научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.
Контрольных работ: 1
2. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (11 часов)
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
Основная цель - развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.
Контрольных работ: 1
3. Длина окружности и площадь круга (11 часов)
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности Площадь круга.
Основная цель - расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.
Контрольных работ: 1
4. Движения (8 часов)
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Основная цель - познакомить учащихся с понятие: движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.
Контрольных работ: 1
5. Начальные сведения из стереометрии (8 часов)
Предмет стереометрии. Геометрические тела и поверхности Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.
Основная цель - дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ новыми формулами для вычисления площадей поверхностей и объемов тел.
6. Об аксиомах геометрии (2 часа)
Беседа об аксиомах геометрии.
Основная цель - дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.
7.Повторение. Решение задач (10 часов)
Основная цель. Повторить, закрепить и обобщить основные ЗУН за основную школу.
Контрольных работ: 1
Предметы математического цикла
5 класс (часов)
6 класс (часов)
7 класс (часов)
8 класс (часов)
9 класс (часов)
Всего (часов)
Арифметика
126
100
226
Алгебра
13
52
102
102
90
359
Геометрия
27
12
68
68
68
243
Элементы логики, комбинаторики,
статистики и теории вероятностей
4
6
12
22
Всего (часов)
170
170
170
170
170
850
1</<font size="2" style="font-size:9pt;">.
1