- Учителю
- Пояснительная записка 10 класс
Пояснительная записка 10 класс
Пояснительная записка
Школьное образование в современных условиях признано обеспечить функциональную грамотность и социальную адаптацию обучающихся на основе приобретения ими компетентного опыта в сфере учения, познания, профессионально-трудового выбора, личностного развития, ценностных ориентации и творчества. Это предопределяет направленность целей обучения на формирование компетентной личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути.
Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения алгебре и началам анализа:
• формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
• развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
• овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
• воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
На основании требований Государственного образовательного стандарта 2004 г. в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время подходы, которые определяют задачи обучения:
• приобретение математических знаний и умений;
• овладение обобщенными способами мыслительной, творческой деятельностей;
• освоение компетенции: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.
В пособии предложены рабочие программы по математике с расширенным тематическим планированием с учетом направленности класса.
С учетом уровневой специфики класса выстроена система учебных занятий, спроектированы цели, задачи, ожидаемые результаты обучения, что представлено в схематической форме. Планируется использование новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно-тематического планирования, связанные с объективными причинами.
Основной целью является обновление требований к уровню подготовки выпускников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции Государственного стандарта - переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам. Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В Государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса алгебры и начал анализа.
При изучении алгебры и начал анализа в старшей школе осуществляется переход от методики поурочного планирования к модульной системе организации учебного процесса. Модульный принцип позволяет не только укрупнить смысловые блоки содержания, но и преодолеть традиционную логику изучения математического материала: от единичного к общему и всеобщему, и от фактов к процессам и закономерностям. В условиях модульного подхода возможна совершенно иная схема изучения математических процессов «все общее - общее - единичное».
Пояснительная записка к рабочей программе по геометрии, 10 класс.
Рабочая программа учебного курса по геометрии для 10 класса разработана на основе Примерной программы основного общего образования (базовый уровень) с учетом требований федерального компонента государственного стандарта общего образования и с учетом программ для общеобразовательных школ с использованием рекомендаций авторской программы Л.С.Атанасяна.
Контрольные работы составляются с учетом обязательных результатов обучения, они завершают изучение разделов: «Параллельность прямых и плоскостей», «Перпендикулярность прямых и плоскостей», «Многогранники», «Векторы в пространстве». В учебнике «Геометрия, 10-11 классы» под редакцией Л.С.Атанасяна отсутствует тема «Параллельное проектирование». Эта тема является важной при изучении стереометрии и указана в основном содержании Примерной программы. Изучение темы включено в рабочую программу в раздел «Параллельность прямых и плоскостей» как тема отдельного урока.
Изучение геометрии в 10 классе направлено на достижение следующих целей:
-
развитие логического мышления;
-
пространственного воображения и интуиции
-
математической культуры;
-
творческой активности учащихся;
-
интереса к предмету; логического мышления;
-
активизация поисково-познавательной деятельности;
-
воспитание средствами геометрии культуры личности: отношения к математике как части общечеловеческой культуры.
Задачи курса геометрии для достижения поставленных целей:
-
систематическое изучение свойств геометрических тел в пространстве
-
формирование умения применять полученные знания для решения практических задач;
-
формирование умения логически обосновывать выводы для изучения школьных естественнонаучных дисциплин на базовом уровне;
-
развитие способности к преодолению трудностей.
Результаты обучения представлены в Требованиях к уровню подготовки обучающихся.
ТРЕБОВАНИЯ
К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ 10 класса
В результате изучения математики на базовом уровне ученик должен:
знать/понимать
•значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
•значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
•универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
•вероятностный характер различных процессов окружающего мира;
Алгебра
уметь
•выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
•проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
Помимо указанных в данном разделе знаний, в Требования к уровню подготовки выпускников включаются также знания, необходимые для освоения перечисленных далее умений.
•вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
•практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
•определять значение функции по значению аргумента при различных способах задания функции;
•строить графики изученных функций;
•описывать по графику и в простейших случаях по формуле1 поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
•решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• описания с помощью функций различных зависимостей,
представления их графически, интерпретации графиков;
Начала математического анализа
уметь
•вычислять производные и первообразные элементарных функций, используя справочные материалы;
•исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
•вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
•составлять уравнения и неравенства по условию задачи;
•использовать для приближенного решения уравнений и неравенств графический метод;
•изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• построения и исследования простейших математических
моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
•решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул; •вычислять в простейших случаях вероятности событий на основе подсчета числа исходов; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
•анализа реальных числовых данных, представленных в виде диаграмм, графиков;
•анализа информации статистического характера.
Геометрия
Уметь решать простые задачи по всем изученным темам, выполняя стереометрический чертеж.
Уметь описывать взаимное расположение прямых и плоскостей в пространстве.
Уметь анализировать в простейших случаях взаимное расположение объектов в пространстве.
Уметь изображать основные многоугольники; выполнять чертежи по условию задач.
Уметь строить простейшие сечения куба, призмы, пирамиды.
Уметь решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов,
площадей).
Уметь использовать при решении стереометрических задач планиметрические факты и методы.
Уровень возможной подготовки обучающихся:
Уметь распознавать на чертежах и моделях пространственные формы.
Уметь описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении.
Проводить доказательные рассуждения в ходе решения задач.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования)
практических ситуаций на основе изученных формул и свойств фигур; вычисления площадей поверхностей пространственных тел при
решении практических задач, используя при необходимости справочники и вычислительные устройства.
Критерии и нормы оценки знаний, умений и навыков обучающихся по алгебре.
1. Оценка письменных контрольных работ обучающихся по геометрии.
Ответ оценивается отметкой «5», если:
- работа выполнена полностью;
- в логических рассуждениях и обоснованиях решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания
учебного материала).
Отметка «4» ставится в следующих случаях:
- работа выполнена полностью, но обоснования шагов решения недостаточны;
- допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах.
Отметка «3» ставится, если:
- допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах, но обучающийся обладает обязательными
умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком
математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся
дополнительно после выполнения им каких-либо других заданий
2. Оценка устных ответов обучающихся по геометрии.
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической
последовательности;
- правильно выполнил рисунки, чертежи, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе
умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна - две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после
замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после
замечания учителя.
Отметка «3» ставится в следующих случаях:
- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание
вопроса и продемонстрированы умения, достаточные для усвоения программного материала;
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после
нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного
уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах, в выкладках, которые
не исправлены после нескольких наводящих вопросов учителя.
Принятые сокращения в тематическом планировании
МД- математический диктант УОНМ - урок ознакомления с новым материалом
СР- самостоятельная работа УЗИМ - урок закрепления изученного материала
ФО- фронтальный опрос УПЗУ - урок применения знаний и умений
ПР- практическая работа КУ - комбинированный урок
КР- контрольная работа КЗУ - контроль знаний и умений
УО- устный опрос УОСЗ - урок обобщения и систематизации знаний
Курсивом выделены темы, на которые отведены дополнительные часы (всего 35 часов в год). Добавлен раздел
« Комбинаторика и вероятность» в количестве 8 часов.
Учебно-тематическое планирование
по математике
Класс 10
Учитель ШАРАФИЕВА ГАМБАРИЯ ГАЛИМУЛЛОВНА
Количество часов
Всего 175 час; в неделю 4 час.
Плановых контрольных уроков 14 тестов 11 ч.;
Планирование составлено на основе нормативных документов:
-
Федеральный компонент государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования
-
Примерная программа основного общего образования по математике, «Дрофа», 2005
Учебники: Литература:
1. Геометрия, 10-11. Л.С.Атанасян, В.Ф.Бутузов, С.В.Кадомцев и др.
2. Зив Б.Г. Дидактические материалы по геометрии для 10 класса.
3. Поурочные разработки по геометрии ( в помощь учителю)
Литература для учащихся:
-
«Геометрия в таблицах 7-11 класс» Звавич Л.И., Рязановский А.Р;
-
«Большой справочник для школьников»
-
«Живая математика» Перельман
-
Справочные пособия и брошюры собственного изготовления