7


  • Учителю
  • Пояснительная записка 10 класс

Пояснительная записка 10 класс

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

Пояснительная записка

Школьное образование в современных условиях признано обеспечить функциональную грамотность и социальную адаптацию обучающихся на основе приобретения ими компетентного опыта в сфере учения, познания, профессионально-трудового выбора, личностного развития, ценностных ориентации и творчества. Это предопределяет направленность целей обучения на формирование компетентной личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути.

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения алгебре и началам анализа:

• формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

• развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

• овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

• воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

На основании требований Государственного образовательного стандарта 2004 г. в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время подходы, которые определяют задачи обучения:

• приобретение математических знаний и умений;

• овладение обобщенными способами мыслительной, творческой деятельностей;

• освоение компетенции: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.

В пособии предложены рабочие программы по математике с расширенным тематическим планированием с учетом направленности класса.

С учетом уровневой специфики класса выстроена система учебных занятий, спроектированы цели, задачи, ожидаемые результаты обучения, что представлено в схематической форме. Планируется использование новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно-тематического планирования, связанные с объективными причинами.

Основной целью является обновление требований к уровню подготовки выпускников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции Государственного стандарта - переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам. Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В Государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса алгебры и начал анализа.

При изучении алгебры и начал анализа в старшей школе осуществляется переход от методики поурочного планирования к модульной системе организации учебного процесса. Модульный принцип позволяет не только укрупнить смысловые блоки содержания, но и преодолеть традиционную логику изучения математического материала: от единичного к общему и всеобщему, и от фактов к процессам и закономерностям. В условиях модульного подхода возможна совершенно иная схема изучения математических процессов «все общее - общее - единичное».


Пояснительная записка к рабочей программе по геометрии, 10 класс.

Рабочая программа учебного курса по геометрии для 10 класса разработана на основе Примерной программы основного общего образования (базовый уровень) с учетом требований федерального компонента государственного стандарта общего образования и с учетом программ для общеобразовательных школ с использованием рекомендаций авторской программы Л.С.Атанасяна.

Контрольные работы составляются с учетом обязательных результатов обучения, они завершают изучение разделов: «Параллельность прямых и плоскостей», «Перпендикулярность прямых и плоскостей», «Многогранники», «Векторы в пространстве». В учебнике «Геометрия, 10-11 классы» под редакцией Л.С.Атанасяна отсутствует тема «Параллельное проектирование». Эта тема является важной при изучении стереометрии и указана в основном содержании Примерной программы. Изучение темы включено в рабочую программу в раздел «Параллельность прямых и плоскостей» как тема отдельного урока.

Изучение геометрии в 10 классе направлено на достижение следующих целей:

  • развитие логического мышления;

  • пространственного воображения и интуиции

  • математической культуры;

  • творческой активности учащихся;

  • интереса к предмету; логического мышления;

  • активизация поисково-познавательной деятельности;

  • воспитание средствами геометрии культуры личности: отношения к математике как части общечеловеческой культуры.

Задачи курса геометрии для достижения поставленных целей:

  • систематическое изучение свойств геометрических тел в пространстве

  • формирование умения применять полученные знания для решения практических задач;

  • формирование умения логически обосновывать выводы для изучения школьных естественнонаучных дисциплин на базовом уровне;

  • развитие способности к преодолению трудностей.

Результаты обучения представлены в Требованиях к уровню подготовки обучающихся.

ТРЕБОВАНИЯ

К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ 10 класса

В результате изучения математики на базовом уровне ученик должен:

знать/понимать

•значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

•значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

•универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

•вероятностный характер различных процессов окружающего мира;

Алгебра

уметь

•выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

•проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

Помимо указанных в данном разделе знаний, в Требования к уровню подготовки выпускников включаются также знания, необходимые для освоения перечисленных далее умений.

•вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

•практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

•определять значение функции по значению аргумента при различных способах задания функции;

•строить графики изученных функций;

•описывать по графику и в простейших случаях по формуле1 поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

•решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• описания с помощью функций различных зависимостей,

представления их графически, интерпретации графиков;

Начала математического анализа

уметь

•вычислять производные и первообразные элементарных функций, используя справочные материалы;

•исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

•вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

•составлять уравнения и неравенства по условию задачи;

•использовать для приближенного решения уравнений и неравенств графический метод;

•изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• построения и исследования простейших математических

моделей;

Элементы комбинаторики, статистики и теории вероятностей

уметь

•решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул; •вычислять в простейших случаях вероятности событий на основе подсчета числа исходов; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

•анализа реальных числовых данных, представленных в виде диаграмм, графиков;

•анализа информации статистического характера.

Геометрия

Уметь решать простые задачи по всем изученным темам, выполняя стереометрический чертеж.

Уметь описывать взаимное расположение прямых и плоскостей в пространстве.

Уметь анализировать в простейших случаях взаимное расположение объектов в пространстве.

Уметь изображать основные многоугольники; выполнять чертежи по условию задач.

Уметь строить простейшие сечения куба, призмы, пирамиды.

Уметь решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов,

площадей).

Уметь использовать при решении стереометрических задач планиметрические факты и методы.

Уровень возможной подготовки обучающихся:

Уметь распознавать на чертежах и моделях пространственные формы.

Уметь описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении.

Проводить доказательные рассуждения в ходе решения задач.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования)

практических ситуаций на основе изученных формул и свойств фигур; вычисления площадей поверхностей пространственных тел при

решении практических задач, используя при необходимости справочники и вычислительные устройства.

Критерии и нормы оценки знаний, умений и навыков обучающихся по алгебре.

1. Оценка письменных контрольных работ обучающихся по геометрии.

Ответ оценивается отметкой «5», если:

- работа выполнена полностью;

- в логических рассуждениях и обоснованиях решения нет пробелов и ошибок;

- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания

учебного материала).

Отметка «4» ставится в следующих случаях:

- работа выполнена полностью, но обоснования шагов решения недостаточны;

- допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах.

Отметка «3» ставится, если:

- допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах, но обучающийся обладает обязательными

умениями по проверяемой теме.

Отметка «2» ставится, если:

- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком

математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся

дополнительно после выполнения им каких-либо других заданий

2. Оценка устных ответов обучающихся по геометрии.

Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической

последовательности;

- правильно выполнил рисунки, чертежи, сопутствующие ответу;

- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе

умений и навыков;

- отвечал самостоятельно, без наводящих вопросов учителя;

- возможны одна - две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после

замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

- допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после

замечания учителя.

Отметка «3» ставится в следующих случаях:

- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание

вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после

нескольких наводящих вопросов учителя;

- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного

уровня сложности по данной теме;

- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;

- обнаружено незнание учеником большей или наиболее важной части учебного материала;

- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах, в выкладках, которые

не исправлены после нескольких наводящих вопросов учителя.

Принятые сокращения в тематическом планировании

МД- математический диктант УОНМ - урок ознакомления с новым материалом

СР- самостоятельная работа УЗИМ - урок закрепления изученного материала

ФО- фронтальный опрос УПЗУ - урок применения знаний и умений

ПР- практическая работа КУ - комбинированный урок

КР- контрольная работа КЗУ - контроль знаний и умений

УО- устный опрос УОСЗ - урок обобщения и систематизации знаний


Курсивом выделены темы, на которые отведены дополнительные часы (всего 35 часов в год). Добавлен раздел

« Комбинаторика и вероятность» в количестве 8 часов.

Учебно-тематическое планирование

по математике

Класс 10

Учитель ШАРАФИЕВА ГАМБАРИЯ ГАЛИМУЛЛОВНА

Количество часов

Всего 175 час; в неделю 4 час.

Плановых контрольных уроков 14 тестов 11 ч.;

Планирование составлено на основе нормативных документов:

  • Федеральный компонент государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования

  • Примерная программа основного общего образования по математике, «Дрофа», 2005

Учебники: Литература:

1. Геометрия, 10-11. Л.С.Атанасян, В.Ф.Бутузов, С.В.Кадомцев и др.

2. Зив Б.Г. Дидактические материалы по геометрии для 10 класса.

3. Поурочные разработки по геометрии ( в помощь учителю)

Литература для учащихся:

  1. «Геометрия в таблицах 7-11 класс» Звавич Л.И., Рязановский А.Р;

  2. «Большой справочник для школьников»

  3. «Живая математика» Перельман

  4. Справочные пособия и брошюры собственного изготовления



 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал