7


  • Учителю
  • Рабочая программа по геометрии

Рабочая программа по геометрии

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала























































































Пояснительная записка

Статус документа

Рабочая программа по геометрии составлена в соответствии с «Законом об образовании» пп7 п.2 ст. 32; Типовым положением об ОУ п.36; на основе обязательного минимума содержания основного общего образования по математике, положения о рабочей программе в МОУ Кондинская СОШ и на основе программ министерства образования РФ 2002 г к учебнику Л.С.Атанасяна и др.

Программа конкретизирует содержание предметных тем обязательного минимума образования и даёт распределение учебных часов по разделам курса. Курс рассчитан на 68 часов в год, т.е. на 2 часа в неделю.

Учебный курс «Геометрия-9» опирается на знания и умения обучающихся, полученных на уроках геометрии в 7-8 классах.



Программа выполняет две основные функции.

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов.

Структура документа

Программа включает следующие разделы: пояснительную записку; основное содержание с распределением учебных часов по разделам курса; учебно-тематический план; требования к уровню подготовки выпускников. В качестве приложения - календарно-тематическое планирование.

Геометрия - один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Цели

Изучение геометрии направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах геометрии как универсального языка науки и техники,

  • воспитание культуры личности, отношения к геометрии как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Общеучебные умения, навыки и способы деятельности.

В ходе преподавания геометрии в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ ОСНОВНОЙ ШКОЛЫ

В результате изучения геометрии ученик должен

знать/понимать1
  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

уметь

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).



УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Содержание программного материала

Всего часов

Из них контрольных работ

1

Векторы.

23

3

2

Соотношения между сторонами и углами треугольника

16

1

3

Длина окружности и площадь круга

12

1

4

Движения.

11

1

5

Об аксиомах планиметрии

6





ИТОГО

68

6



ОСНОВНОЕ СОДЕРЖАНИЕ

(2 ч в неделю, всего 68 ч)

1. Векторы. Метод координат (23 ч).

Понятие вектора. Абсолютная величина и направление вектора. Равенство векторов. Сложение и вычитание векторов. Ум­ножение вектора на число. Коллинеарные векторы. Проекция на ось. Разложение вектора по координатным осям. Координа­ты вектора. Простейшие задачи в координатах

Основная цель - сформировать понятие вектора как направленного отрезка, показать учащимся применение век­тора к решению простейших задач.

При изучении данной темы основное внимание уделяется выполнению операций над векторами в геометрической фор­ме. Именно этот материал используется при изучении физи­ки. Поэтому для более глубокого понимания векторов и опе­раций над ними полезно воспользоваться знаниями учащихся о векторных величинах, полученных на уроках физики.

Понятие равенства векторов вводится на интуитивной основе. Завершается изучение темы знакомством с понятием коор­динат вектора.

  • Знать:

Определение вектора. Координаты вектора. Координаты середины отрезка. Длина отрезка. Уравнения линий. Уравнение окружности. Уравнение прямой;

  • Уметь:

Откладывать вектор от заданной точки.

Находить сумму и разность двух и более векторов.

Умножать вектор на число.

Определять координаты вектора,

Применять векторный способ к решению задач.

Составлять уравнение прямой и окружности по заданным координатам точек



Контрольная работа №1 по теме «Понятие вектора. Действия с векторами» Контрольная работа №2 по теме «Простейшие задачи в координатах»

Контрольная работа №3 по теме «Уравнение прямой. Уравнение окружности»



2. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (16 ч).

Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Соотношения между сторонами и углами треугольника.

Основная цель - познакомить учащихся с основны­ми алгоритмами решения произвольных треугольников.

В процессе изучения данной темы знания учащихся о тре­угольниках дополняются сведениями о методах вычисления эле­ментов произвольных треугольников, основанных на теоремах синусов и косинусов. Кроме того, здесь же учащиеся знакомятся еще с одной формулой площади треугольника. При этом воспро­изведения доказательств этих теорем от учащихся можно не тре­бовать.

Знать:

Определение синуса, косинуса, тангенса острого угла прямоугольного треугольника и угла от 0 одо 180 о.

Теоремы синусов и косинусов.

Уметь:

Определять значения тригонометрических функций по заданным значениям углов.

Находить стороны и углы треугольника по известным элементам треугольника.

Использовать знания и умения в практической деятельности для:

Расчётов, включающих тригонометрические формулы.

Решения геометрических задач с использованием тригонометрии.

Решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства)



Контрольная работа №4 по теме «Соотношения между сторонами и углами треугольника»



3. Длина окружности и площадь круга (12 ч).

Правильные многоугольники. Длина окружности и пло­щадь круга.

Основная цель - расширить и систематизировать знания учащихся об окружностях и многоугольниках.

В этой теме учащиеся знакомятся с окружностями, вписан­ными в правильные многоугольники, и окружностями, опи­санными около правильных многоугольников, и их свойства­ми. Воспроизведения доказательств этих теорем можно не требовать от всех учащихся.

Решение задач на применение формул - вычисления пло­щадей и сторон правильных многоугольников; радиусов впи­санных и описанных окружностей; длины дуги окружности и площади круга - подготавливает аппарат для решения задач, связанных с многогранниками и телами вращения.

Построение правильных многоугольников с помощью циркуля и линейки ограничивается построением квадрата, правильных треугольника, шестиугольника и 8-угольника. Эти идеи затем применяются при выводе формул длины ок­ружности и площади круга.

Здесь учащиеся на интуитивном уровне знакомятся с поня­тием предела и с его помощью рассматривают вывод формул длины окружности и площади круга.

Знать:

Определение правильного многоугольника,

Определение вписанного и описанного многоугольника,

Определение центра, радиуса, диаметра, хорды окружности ,сектора и сегмента круга;

Определение центрального и вписанного угла;

Формулы длины окружности и площади круга;

Ууметь:

вычислять длину окружности,

вычислять площадь круга, сектора и сегмента,

вычислять сторону правильного многоугольника по заданным радиусам вписанной и описанной окружностей.



Контрольная работа №5 по теме «Длина окружности и площадь круга»



4. Движение (11 ч).

Понятие движения. Параллельный перенос и поворот.

Основная цель - познакомить с понятием движения на плоскости: симметриями, параллельным переносом, поворотом.

Понятие отображения плоскости на себя как основы для введения понятия движения рассматривается на интуитивном уровне с привлечением уже известных учащимся понятий осе­вой и центральной симметрии. Изучение понятия движения и его свойств дается в ознакомительном плане.

Акцентируется внимание учащихся на том, что одно из ос­новных понятий изучаемого ими курса геометрии, а именно наложение, есть отображение плоскости на себя.

При изучении темы основное внимание следует уделить вы­работке навыков построения образов точек, отрезков, треуголь­ников при симметриях, параллельном переносе, повороте.

Иметь понятие: о видах движения плоскости.

Уметь:

строить симметричные фигуры;

строить различные геометрические фигуры и преобразовывать их различными способами движения плоскости



Контрольная работа №6 по теме «Движения»



5. Некоторые стереометрические фигуры. Об аксиомах планиметрии. (6 ч).

Некоторые стереометрические фигуры. Беседа об аксиомах планиметрии.

Основная цель - дать представление о стереометрии, некоторых стереометрических фигурах: многогранник, призма, параллелепипед, куб, пирамида, конус, цилиндр.

Беседа об аксиомах планиметрии даёт понятие о том, что вся геометрия основывается на некоторой базе незыблемых понятий, которые называются аксиомами. Несколько тысячелетий геометрия основывается на системе аксиом Евклида, но существует и неевклидова геометрия. Основоположником одной из таких является Н.И. Лобачевский.

Иметь представление: о призме, кубе, пирамиде, многограннике, цилиндре, конусе.









КОНТРОЛЬ УРОВНЯ ОБУЧЕННОСТИ

Контроль уровня обученности осуществляется при помощи системы контрольных работ, источник - В.И.Жохов, Г.Д. Карташева, Л.Б.Крайнева, С.М.Саакян «Примерное планирование учебного материала и контрольные работы по математике. 5-11 классы» Вербум-М. Москва 2002, с. 121, с.148- 152

  1. Контрольная работа № 1, с. 121

  2. Контрольная работа № 2, с. 148

  3. Контрольная работа № 3, с 149

  4. Контрольная работа № 4, с.150

  5. Контрольная работа № 5, с.151

  6. Контрольная работа № 6, с.152









ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ

I. Нормативно-правовая база:

  1. Закон об образовании.

2.. Сборник министерства образования РФ

Содержание общего образования (1-11 классы)

Обязательный минимум. Требования к уровню подготовки. Программы.

Мнемозина. Москва 2015

Составители: В.А. Коровин, И.А. Петрова, Л.М. Рыбченкова.

Под редакцией А.М. ВОДЯНОВСКОГО

II. Учебно- методические пособия

  1. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселёва, Э.Г. Позняк «Геометрия7-9», учебник для общеобразовательных учреждений» М; Просвещение, 2015

  2. С.М. Саакян, В.Ф. Бутузов «Изучение геометрии в 7-9 классах» Книга для учителя. М; Просвещение, 2014

  3. В.И. Жохов, Г.Д. Карташева, Л.Б. Крайнева, С.М. Саакян «Примерное планирование учебного материала и контрольные работы по математике. 5-11 классы»; Москва; «Вербум-М»;2011

  4. Б.Г. Зив «Дидактические материалы по геометрии, 9 класс», Москва, «Просвещение», 2014

  5. Геометрия. 9 класс: поурочные планы по учебнику Л.С. Атанасяна и др. «Геометрия. 7-9 классы» / авт.-сост. Т.Л.Афанасьева, Л.А. Тапилина. - Волгоград: Учитель, 2015. - 132 с.



ЛИТЕРАТУРА ДЛЯ ОБУЧАЮЩИХСЯ.

1. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселёва, Э.Г. Позняк «Геометрия7-9», учебник для общеобразовательных учреждений» М; Просвещение, 2015











Календарно-тематическое планирование.



урока

Тема урока

Всего часов

Основные базовые понятия

Повторение

Основные ЗУН

Материально-техническое оснащение

Дата проведения

Домашнее

задание



Векторы.

23





  • знать:

Определение вектора,

Уравнения линий,

Уравнение окружности,

Уравнение прямой;

  • Уметь:

Откладывать вектор от заданной точки,

Находить сумму и разность двух и более векторов,

Определять координаты вектора,

Применять векторный способ к решению задач.





































Знать:







Знать:



уравнение окружности и уравнения прямой

Уметь:

решать задачи на применение этих формул









1

Понятие вектора

1

вектор



Линейка, таблица «Векторы»





2

Равенство двух векторов

1

коллинеарность



Линейка, таблица «Векторы»





3

Откладывание вектора от данной точки

1

Равные векторы



Линейка, таблица «Векторы»





4-5

Сумма векторов

2

Правило ∆, правило параллелограмма

Законы сложения векторов

Линейка, таблица «Векторы»





6

Вычитание векторов

1

Законы сложения



Линейка, таблица «Векторы»





7

Умножение вектора на число

1





Линейка, таблица «Векторы»





8-10

Применение векторов к решению задач

3

Средняя линия трапеции

трапеция







11

Контрольная работа №1 по теме «Понятие вектора. Действия с векторами»

1











12-13

Координаты вектора

2

Коллинеарные векторы



Линейка, с.к. на доске





14-15

Простейшие задачи в координатах

2

Координаты вектора, координаты точки









16

Контрольная работа №2 по теме «Простейшие задачи в координатах»

1











17-18

Уравнение окружности

2

(х-хо)2 + (y-уо)2 = R2



Циркуль, линейка





19-20

Уравнение прямой

2

ах+bу=с

Линейная функция

и её график

линейка





21-22

Решение задач

2











23

Контрольная работа №3 «Уравнение прямой. Уравнение окружности»

1













Соотношения между сторонами и углами треугольника

16





Знать:

Определение синуса, косинуса, тангенса острого угла прямоугольного треугольника и угла от 0о до 180 о.

Уметь:

Определять значения тригонометрических функций по заданным значениям углов,

Находить стороны и углы треугольника по известным элементам.

Использовать знания и умения в практической деятельности для:

Расчётов, включающих тригонометрические формулы, решения геометрических задач с использованием тригонометрии,

решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства)









24-25

Синус, косинус и тангенс

2

Синус, косинус и тангенс

Прямоугольный треугольник

Циркуль, линейка





26-28

Основное тригонометрическое тождество

3

sin2α+cos2α=1

Теорема Пифагора







29

Теорема о площади треугольника

1

S=0,5ah; S=0,5absinC

Формула S∆







30

Теорема синусов

1

Рабочая программа по геометрии=Рабочая программа по геометрии=Рабочая программа по геометрии

Свойства пропорции







31

Теорема косинусов

1

c2 = a2 + b2 - 2abcosC

Теорема Пифагора. Решение уравнений







32-

33

Решение треугольников

2

Теоремы синусов и косинусов

Прямоугольный треугольник









34-

35

Угол между векторами. Скалярное произведение векторов

2

ā∙ē=│ā│∙│ē│∙ ∙cos(ā^ē)

Работа силы (физика)







36-

38

Скалярное произведение в координатах

3

ā∙ē = х1∙х2 + у1 ∙у2









39

Контрольная работа №4 по теме «Соотношения между сторонами и углами треугольника»

1













Длина окружности и площадь круга

12





Знать:

Df правильного многоугольника,

Df вписанного и описанного многоугольника,

Df центра, радиуса, диаметра, хорды окружности ,сектора и сегмента круга;

Df центрального и вписанного угла;

формулы длины окружности и площади круга;

Уметь:

вычислять длину окружности,

вычислять площадь круга, сектора и сегмента,

вычислять сторону правильного многоугольника по заданным радиусам вписанной и описанной окружностей.







40-

43

Правильные многоугольники



4

Правильные многоугольники

Виды многоугольников

Таблица «Правильные многоугольники»





44-

47

Длина окружности и площадь круга



4

C=2πR; S=πR2



Таблица «Длина окружности и площадь круга»





48-

50

Решение задач



3











51

Контрольная работа №5 по теме «Длина окружности и площадь круга»

1













Движения.

11













52-

54

Понятие движения



3

Вектор перемещения, расстояние между двумя точками

Вектор, длина вектора, расстояние между двумя точками

Иметь понятие: о видах движения плоскости.

Уметь:

строить симметричные фигуры;

строить различные геометрические фигуры и преобразовывать их различными способами движения плоскости

Линейка, циркуль





55-

58

Параллельный перенос и поворот, осевая и центральная симметрия

4

Вектор перемещения, угол поворота, симметричные фигуры



Линейка, циркуль, медиапроектор.





59-

61

Решение задач

3













62

Контрольная работа №6 по теме «Движения»

1















Некоторые стереометрические фигуры

6













63-

65

Некоторые стереометрические фигуры

3

Призма, куб, цилиндр, конус, стереометрия



Иметь представление: о призме, кубе, цилиндре, пирамиде, конус;

о системе аксиом

Призма, куб, цилиндр, конус.





66-

68

Об аксиомах планиметрии. Решение задач.

3













Всего

68















1</<br>





 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал