7


  • Учителю
  • Использование производной для решения уравнений и неравенств

Использование производной для решения уравнений и неравенств

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

Использование производной для решения

уравнений и неравенств

Бирагова Л.Л.МБОУ лицей г.Владикавказ

При решении уравнения или неравенства часто бывает полезно доказать возрастание (убывание) на некотором промежутке функций, в него входящих. При этом часто пользуются производными.

Пример 1.

Решим уравнение

. (1)

Решение.

Рассмотрим функцию . Область существования этой функции есть промежуток . Функция f(x) имеет внутри промежутка Х положительную производную .

Следовательно, функция f(x) возрастает на промежутке Х, и так как она непрерывна на этом промежутке, то каждое свое значение она принимает ровно в одной точке. А это означает, что уравнение (1) имеет не более одного корня. Легко видеть, что число удовлетворяет уравнению (1). Следовательно, уравнение (1) имеет единственный корень .

Ответ: -1.


Пример 2.

Решим неравенство

(2)

Решение.

Рассмотрим функцию f(x)= . Поскольку эта функция на интервале X= имеет производную , которая положительна на этом интервале, то функция f(x) возрастает на интервале Х. Так как функция f непрерывна на интервале Х, то каждое свое значение она принимает ровно в одной точке. Следовательно, уравнение f(x)=0 может иметь не более одного корня. Легко видеть, что число является корнем уравнения f(x)=0. Поскольку функция f(x) непрерывна и возрастает на интервале Х, то f(x)<0 при x<0 и f(x)>0 при x>0. Поэтому решениями неравенства (2) являются все х из промежутка .

Ответ: .


Пример 3.

Выяснить, сколько действительных корней имеет уравнение:

. (1)


Решение.

Рассмотрим функцию . Она на интервале имеет производную .

Производная обращается в нуль точках: и . Так как для любого х из интервалов и , то на каждом из промежутков и функция возрастает. Так как для любого х из промежутка , то на промежутке функция убывает.

Так как , , , и функция непрерывна на каждом из интервалов , и , то на каждом из них есть единственная точка, в которой эта функция обращается в нуль. Следовательно, функция имеет три нуля, т.е. уравнение (1) имеет три действительных корня.

Ответ: три действительных корня.

Пример 4.

Решить уравнение:

(1)

Решение.


Обе части уравнения (1) определены на отрезке . Рассмотрим функцию

.

Эта функция на интервале имеет производную

,

которая обращается в ноль в единственной точке .Так как функция непрерывна на отрезке , то она достигает на этом отрезке наибольшего и наименьшего значений. Они находятся среди чисел , , .

Так как , то наибольшее значение 2 на отрезке функция достигает в единственной точке . Следовательно, уравнение (1) имеет единственный корень .

Ответ: 3.




 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал