- Учителю
- Конспект по математике на тему Уравнение касательной
Конспект по математике на тему Уравнение касательной
Урок: Уравнение касательной к графику функции
Цель урока: На уроке рассмотреть тему «Уравнение касательной к графику функции». Вывести уравнение касательной к графику функции. Затем, чтобы успешно решать задачи на касательную, рассмотреть смысл каждого его элемента.
1. Уравнение касательной к графику функции
На предыдущих занятиях были рассмотрены задачи на технику дифференцирования. Это очень важные задачи, и нахождение производных необходимо в разных задачах, в том числе и в составлении уравнения касательной.
Построим кривую (см.
рис.1).
Рис. 1. График функции .
Зафиксируем точку х=а. Если х=а, то значение функции равно
. Значит,
имеем точку с координатами (
.
Задача: составить уравнение касательной. Более строгая
формулировка - написать уравнение касательной к функции в
точке с абсциссой х=а, в которой
-
существует.
Уравнение касательной - это прямая, которая задается формулой
Любая прямая, в том числе и касательная, определяется двумя
числами: и
.
Исходя из геометрического смысла производной
(тангенс
угла наклона касательной) - это есть угловой коэффициент
.
Параметр найдем из
условия, что касательная проходит через точку (
, то
есть .
.
Стало быть .
Запишем уравнение касательной
.
Или, .
Получили уравнение касательной к кривой в
точке с абсциссой
.
2. Смысл элементов уравнения касательной
Смысл каждого элемента, который входит в уравнение касательной.
1) ( - точка
касания касательной и графика функции.
2) - угловой
коэффициент касательной к графику функции.
3) -
произвольная точка на касательной.
Очень много задач, когда задана точка, которая не лежит на
графике функции, и через нее надо провести касательную к данной
функции. Надо четко понимать, что - это
произвольная точка на касательной.
Итак, получили уравнение касательной, проанализировали смысл каждого элемента этой касательной, и теперь приведем пример, и на нем изложим методику построения касательной.
3. Алгоритм составления уравнения касательной к графику функции
Задача.
К кривой в точке с
абсциссой
провести
касательную. Проиллюстрируем поиск касательной на рисунке (см.
рис.2).
Рис. 2. Касательная к графику функции .
Зафиксируем точку . Значение
функции в этой точке равно 1.
Алгоритм составления уравнения касательной к графику функции:
1) Найти и точку
касания.
- дано.Точка
касания: (
;.
2) Найти производную в любой точке .
.
3) Найти значение производной в точке с абсциссой .
4) Выписать и проанализировать уравнение касательной.
.
Упрощаем и получаем: .
Ответ: .
4. Сопутствующие задачи
Задача 1.
Пусть дано уравнение касательной .
Найдите точки пересечения касательной с осями координат.
Если , то
. -
это первая точка.
Если , то
.
-
вторая точка.
Итак, первая точка - это точка с
координатами
. Вторая
точка - точка пересечения с осью
, точка
с
координатами
(см.
рис.3).
Рис.3. Точки пересечения касательной к графику функции с
осями координат. Задача 2.
Найти длину отрезка касательной, которая отсекается осями
координат, то есть надо найти длину отрезка .
Рассмотрим прямоугольный треугольник
(Рис. 3). Длина катета
равна 1.
Длина катета
. Длину
отрезка
из
прямоугольного треугольника найдем по теореме Пифагора:
Задача 3.
Найти площадь треугольника, образованного касательной и осями
координат. Ясно, что это площадь треугольника
(Рис. 3) - площадь треугольника, образованного касательной и осями
координат.
Следующая задача для самостоятельного решения.
Найдите радиус окружности, вписанной в треугольник . Радиус окружности, описанной около треугольника .
5. Касательная к графику тригонометрической функции
Рассмотрим пример.
Дана функция . Написать
уравнение касательной к данной кривой в точке с данной абсциссой.
Рассмотрим графическую иллюстрацию (см. рис.4).
Рис. 4. Касательная к графику функции .
Нахождение точки касания.
1. Точка
касания имеет координаты .
2. Найти .
3. Найти
И, последнее действие, - написать уравнение касательной.
4. .
Упростим и получим .
Заметим в точке (0;0) синусоида и касательная соприкасаются. В районе точки х=0 синусоида и прямая почти не различаются.
6. Итог урока
Итак, мы вывели уравнение касательной. Рассмотрели все элементы этой касательной. Выяснили их смысл. Сформулировали одну из методик нахождения касательных в конкретных функциях, в конкретных точках и решили некоторые сопутствующие задачи.
Список рекомендованной литературы
1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.
2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.
3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.
4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.
5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.
6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.
7. ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.
8. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.
9. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.
</ 10. Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983