- Учителю
- Пояснительная записка 6 кл фгос по мат-ке
Пояснительная записка 6 кл фгос по мат-ке
Пояснительная записка.
Рабочая программа по математике для 6 класса составлена на основе:
- Закон «Об образовании»;
- Федерального государственного образовательного стандарта основного общего образования;
- примерной программы основного общего образования по математике (Математика. Сборник рабочих программ. 5-6 классы: пособие для учителей общеобразовательных учреждений / [сост. Т.А.Бурмистрова]. - 2-е изд., доп. - М.: Просвещение,2012.)
- базисного учебного плана общеобразовательных учреждений РФ, утвержденного приказом Министерства образования и науки РФ от 09.03.2004 № 1312;
- федерального перечня учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, утверждаемого приказом Министерства образования и науки РФ № 1067 от 19.12.12 ежегодно.
Рабочая программа ориентирована на использование учебника :
-
Математика. 6 класс : учебник для учащихся общеобразовательных учреждений /Н.Я.Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд. - 32-е изд., стер. - М.: Мнемозина, 2013.
-
Математика. Сборник рабочих программ. 5-6 классы: пособие для учителей общеобразовательных учреждений / [сост. Т.А.Бурмистрова]. - 2-е изд., доп. - М.: Просвещение,2012.
Значимость математики как одного из основных компонентов базового образования определяется ее ролью в научно-техническом прогрессе, в современной науке и производстве, а также важностью математического образования для формирования духовной среды подрастающего человека, его интеллектуальных и морально-этических качеств через овладение обучающимися конкретными математическими знаниями, необходимыми для применения в практической деятельности, достаточными для изучения других дисциплин, для продолжения обучения в системе непрерывного образования.
Целью изучения курса математики в 6 классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению курса
алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений.
Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи
выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Задачи:
-
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
-
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
-
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов, устойчивого интереса учащихся к предмету;
-
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;
-
выявление и формирование математических и творческих способностей
Общая характеристика учебного предмета.
Значимость математики как одного из основных компонентов базового образования определяется ее ролью в научно-техническом прогрессе, в современной науке и производстве, а также важностью математического образования для формирования духовной среды подрастающего человека, его интеллектуальных и морально-этических качеств через овладение обучающимися конкретными математическими знаниями, необходимыми для применения в практической деятельности, достаточными для изучения других дисциплин, для продолжения обучения в системе непрерывного образования.
Новая парадигма образования, реализуемая ФГОС, - это переход от школы информационно-трансляционной к школе деятельностной, формирующей у обучающихся универсальные учебные действия, необходимые для решения конкретных личностно значимых задач. Поэтому изучение математики на ступени основного общего образования направлено на достижение следующих целей:
В направлении личностного развития:
-
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
-
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
-
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
-
формирование качеств мышления, необходимых для адаптации в современном интеллектуальном обществе;
-
развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении:
-
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
-
развитие представлений о математике как о форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
-
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
В предметном направлении:
-
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни (систематическое развитие числа, выработка
-
умений устно и письменно выполнять арифметические действия над обыкновенными дробями и рациональными числами, перевод практических задач на язык математики, подготовка учащихся к дальнейшему изучению курсов «Алгебра» и «Геометрия», формирование умения пользоваться алгоритмами); создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности.
Данные цели достигаются через интеграцию курса математики с междисциплинарными учебными программами - «Формирование универсальных учебных действий», «Формирование ИКТ- компетентности обучающихся», «Основы учебно-исследовательской и проектной деятельности» и «Основы смыслового чтения и работа с текстом» (см. «Примерная основная образовательная программа образовательного учреждения. Основная школа» - «… программа формирования планируемых результатов освоения междисциплинарных программ предполагает адаптацию итоговых планируемых результатов к возможностям каждого педагога с отражением вклада отдельных предметов…»)
Изучение учебного предмета «Математика» направлено на решение следующих задач:
-
формирование вычислительной культуры и практических навыков вычислений;
-
формирование универсальных учебных действий, ИКТ-компетентности, основ учебно-исследовательской и проектной деятельности, умений работы с текстом;
-
овладение формально-оперативным алгебраическим аппаратом и умением применять его к решению математических и нематематических задач; изучение свойств и графиков элементарных функций, использование функционально-графических представлений для описания и анализа реальных зависимостей;
-
ознакомление с основными способами представления и анализа статистических данных, со статистическими закономерностями в реальном мире, приобретение элементарных вероятностных представлений;
-
освоение основных фактов и методов планиметрии, формирование пространственных представлений;
-
интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценного функционирования в обществе;
-
развитие логического мышления и речевых умений: умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический);
-
формирование представлений об идеях и методах математики как научной теории, о месте математики в системе наук, о математике как форме описания и методе познания действительности;
-
развитие представлений о математике как части общечеловеческой культуры, воспитание понимания значимости математики для общественного прогресса.
В курсе математики 6 класса можно выделить следующие основные содержательные линии: арифметика, элементы алгебры, вероятность и статистика, наглядная геометрия. Наряду с этим в содержание включаются две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно-методологическую линию, пронизывающую все основные содержательные линии. При этом первая линия - « Математика» - служит цели овладения учащимся некоторыми элементами универсального математического языка, вторая - « Математика в историческом развитии» - способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимся математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение различных задач, а также приобретению практических навыков, необходимых в повседневной жизни.
Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.
Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы правильной геометрической речи, развивает образное мышление и пространственные представления.
Программа составлена с учетом принципа преемственности между основными ступенями обучения: начальной, основной и полной средней школой.
Место предмета в федеральном базисном учебном плане.
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с 5 по 9 класс.
Рабочая программа для 6 класса рассчитана на 5 часов в неделю, 34 учебных недель, всего 170 часов. В течение года планируется провести 16 контрольных работ, а также 6 самостоятельных работы и 8 тестов по стержневым темам курса математики 5 класса. При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей их реализацией.
Личностные, метапредметные и предметные результаты освоения содержания курса
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
личностные:
-
ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
-
формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
-
умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
-
первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
-
критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
-
креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
-
умения контролировать процесс и результат учебной математической деятельности;
-
формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
-
способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
-
умения осуществлять контроль по образцу и вносить необходимые коррективы;
-
способности адекватно оценивать правильность или Ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
-
умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
-
умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
-
развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
-
формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);
-
первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
-
развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
-
умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
-
умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
-
умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
-
понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
-
умения самостоятельно ставить цели, выбирать и создавать алгоритмы для рещения учебных математических проблем;
-
способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
-
умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
-
владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
-
умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
-
умения пользоваться изученными математическими формулами
-
знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
-
умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Содержание учебного предмета
1. Делимость чисел
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.
Основная цель - завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
2.Сложение и вычитание дробей с разными знаменателями
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.
Основная цель - выработать прочные навыки преобразования дробей, сложения и вычитания дробей.
3. Умножение и деление обыкновенных дробей
Умножение и деление обыкновенных дробей. Основные задачи на дроби.
Основная цель - выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби
4. Отношения и пропорции
Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятие о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.
Основная цель - сформировать понятия пропорции, прямой и обратной пропорциональности величин.
5. Положительные и отрицательные числа
Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.
Основная цель - расширить представления учащихся о числе путем введения отрицательных чисел.
6. Сложение и вычитание положительных и отрицательных чисел
Сложение и вычитание положительных и отрицательных чисел.
Основная цель - выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.
7. Умножение и деление положительных и отрицательных чисел
Умножение десятичных положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.
Основная цель - выработать прочные навыки арифметических действий с положительными и отрицательными числами.
8. Решение уравнений
Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Основная цель - подготовить учащихся к выполнению преобразований выражений, решению уравнений.
9. Координаты на плоскости
Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков и диаграмм.
Основная цель - познакомить учащихся с прямоугольной системой координат на плоскости.
10. Повторение. Решение задач.
Тематическое планирование с определением основных видов учебной деятельности
Содержание учебного материала
Характеристика основных видов учебной деятельности ученика
(на уровне учебных действий)
§1 Делимость чисел (18 часов)
Делители и кратные
Формулировать определения понятий: делитель, кратное, простое число, составное число, общий делитель, наибольший общий делитель, взаимно простые числа, общее кратное, наименьшее общее кратное и признаки делимости на 2, на 3, на 5, на 9, на 10.
Описывать правила нахождения наибольшего общего делителя (НОД), наименьшего общего кратного (НОК) нескольких чисел, разложения натурального числа на простые множители
Признаки делимости на 10, на 5 и на 2
Признаки делимости на 9 и на 3
Простые и составные числа
Наибольший общий делитель
Наименьшее общее кратное
§2 Сложение и вычитание дробей с разными знаменателями (23 часа)
Основное свойство дроби
Формулировать определения понятий: несократимая дробь, общий знаменатель двух дробей, взаимно обратные числа. Применять основное свойство дроби для сокращения дробей. Приводить дроби к новому знаменателю. Сравнивать обыкновенные дроби. Выполнять арифметические действия над обыкновенными дробями.
Находить дробь от числа и число по заданному значению его дроби. Преобразовывать обыкновенные дроби в десятичные. Находить десятичное приближение обыкновенной дроби
Сокращение дробей
Приведение дробей к общему знаменателю. Сравнение дробей
Сложение и вычитание дробей
§3 Умножение и деление обыкновенных дробей (25 часов)
Нахождение дроби от числа
Взаимно обратные числа
Деление дробей
Нахождение числа по значению его дроби
Преобразование обыкновенных дробей в десятичные
Бесконечные периодические десятичные дроби
Десятичное приближение обыкновенной дроби
§4 Отношения и пропорции (20 часов)
Отношения
Формулировать определения понятий: отношение, пропорция, процентное отношение двух чисел, прямо пропорциональные и обратно пропорциональные величины. Применять основное свойство отношения и основное свойство пропорции. Приводить примеры и описывать свойства величин, находящихся в прямой и обратной пропорциональных зависимостях. Находить процентное отношение двух чисел. Делить число на пропорциональные части.
Записывать с помощью букв основные свойства дроби, отношения, пропорции.
Анализировать информацию, представленную
в виде столбчатых и круговых диаграмм. Представлять информацию в виде столбчатых и круговых диаграмм.
Приводить примеры случайных событий. Находить вероятность случайного события в опытах
с равновозможными исходами.
Распознавать на чертежах и рисунках окружность, круг, цилиндр, конус, сферу, шар и их элементы. Распознавать в окружающем мире модели этих фигур. Строить с помощью циркуля окружность заданного радиуса. Изображать развёртки цилиндра и конуса. Называть приближённое значение числа. Находить с помощью формул длину окружности, площадь круга
Пропорции
Процентное отношение двух чисел
Прямая и обратная пропорциональные зависимости
Деление числа в данном отношении
Окружность и круг
Длина окружности. Площадь круга
Цилиндр, конус, шар
Диаграммы
§5 Положительные и отрицательные числа (14 часов)
Положительные и отрицательные числа
Приводить примеры использования положительных и отрицательных чисел. Формулировать определение координатной прямой. Строить на координатной прямой точку с заданной координатой, определять координату точки.
Характеризовать множество целых чисел. Объяснять понятие множества рациональных чисел.
Формулировать определение модуля числа. Находить модуль числа.
Сравнивать рациональные числа. Выполнять арифметические действия над рациональными числами. Записывать свойства арифметических действий над рациональными числами в виде формул. Называть коэффициент буквенного выражения.
Применять свойства при решении уравнений. Решать текстовые задачи с помощью уравнений.
Распознавать на чертежах и рисунках перпендикулярные и параллельные прямые, фигуры, имеющие ось симметрии, центр симметрии. Указывать в окружающем мире модели этих фигур. Формулировать определение перпендикулярных прямых и параллельных прямых. Строить с помощью угольника перпендикулярные прямые и параллельные прямые.
Объяснять и иллюстрировать понятие координатной плоскости. Строить на координатной плоскости точки с заданными координатами, определять координаты точек на плоскости. Строить отдельные графики зависимостей между величинами по точкам. Анализировать графики зависимостей между величинами (расстояние, время, температура и т. п.)
Координатная прямая
Целые числа. Рациональные числа
Модуль числа
Сравнение чисел
§6 Сложение и вычитание положительных и отрицательных чисел (12 часов)
Сложение рациональных чисел
Свойства сложения рациональных чисел
Вычитание рациональных чисел
§7 Умножение и деление положительных и отрицательных чисел (13 часов)
Умножение рациональных чисел
Свойства умножения рациональных чисел
Коэффициент. Распределительное свойство умножения
Деление рациональных чисел
§8 Решение уравнений (15 часов)
Решение задач с помощью уравнений
§9 Координаты на плоскости (11 часов)
Осевая и центральная симметрии
Параллельные прямые
Координатная плоскость
Графики
Учебно-методическое обеспечение и материально- техническое обеспечение учебного процесса
Рабочая программа составлена на основе федерального образовательного стандарта нового поколения, Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 - 9 класс» - М.: Просвещение, 2011 г. и «Сборник рабочих программ 5 - 6 классы», - М.: Просвещение, 2012. Составитель Т. А. Бурмистрова. Данная рабочая программа ориентирована на учителей математики, работающих в 6 классах по УМК Н.Я.Виленкина.
Для учащихся:
-
Н. Я. Виленкин «Математика 6 класс». Учебник для 6 класса общеобразовательных учреждений. - М.: Мнемозина, 2013
-
Попов М. А. Дидактические материалы по математике. 6 класс к учебнику Н. Я. Виленкина и др. «Математика 6 класс». ФГОС - «Экзамен», 2013
-
В. Н. Рудницкая. УМК Математика 6 класс по учебнику Н. Я. Виленкина [тесты] ФГОС
Для учителя:
-
Примерная основная образовательная программа образовательного учреждения. Основная школа. Серия: М: . 2011 - 352с.
-
Примерные программы по учебным предметам. Математика 5-9 классы - 3-е издание, переработанное - М. Просвещение. 2011 - 64с (Стандарты второго поколения)
-
Федеральный государственный общеобразовательный стандарт основного общего образования (Министерство образования и науки Российской Федерации. М. Просвещение. 2011 - 48с (Стандарты второго поколения)
-
Примерные программы по учебным предметам. Математика 5-9 классы - 3-е издание, переработанное - М. Просвещение. 2011 - 64с (Стандарты второго поколения)
-
«Математика». Сборник рабочих программ. 5-6 классы [Т.А.Бурмистрова]. - М.: Просвещение, 2013. - 64с.
-
Н. Я. Виленкин «Математика 6 класс». Учебник для 6 класса общеобразовательных учреждений. - М.: Мнемозина, 2013
-
Попов М. А. Дидактические материалы по математике. 6 класс к учебнику Н. Я. Виленкина и др. «Математика 6 класс». ФГОС - «Экзамен», 2013
-
Попов М. А. Контрольные и самостоятельные работы по математике. 6 класс. К учебнику Н. Я. Виленкина и др. « Математика 6 класс». ФГОС - «Экзамен», 2011
Интернет - ресурсы:
Сайты для учащихся:
Интерактивный учебник. Математика 6 класс. Правила, задачи, примеры
Энциклопедия для детей
Энциклопедия по математике
Справочник по математике для школьников
Математика он-лайн
Сайты для учителя:
Педсовет, математика
Учительский портал. Математика
Для учителя математики, алгебры, геометрии
Видеоуроки по математике - 6 класс , UROKIMATEMAIKI.RU ( Игорь Жаборовский )
Техническое обеспечение образовательного процесса
Материальное обеспечение кабинетов:
- мультимедийный компьютер;
- проектор;
- Интерактивная доска
Планируемые результаты изучения учебного предмета
По окончании изучения курса учащийся научится:
-
понимать особенности десятичной системы счисления;
-
использовать понятия, связанные с делимостью натуральных чисел;
-
выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
-
сравнивать и упорядочивать рациональные числа;
-
выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
-
использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
-
анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).
Учащийся получит возможность:
-
познакомиться с позиционными системами счисления с основаниями, отличными от 10;
-
углубить и развить представления о натуральных числах и свойствах делимости;
-
научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.
Числовые и буквенные выражения. Уравнения
По окончании изучения курса учащийся научится:
-
выполнять операции с числовыми выражениями;
-
выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);
-
решать линейные уравнения, решать текстовые задачи алгебраическим методом.
Учащийся получит возможность:
-
развить представления о буквенных выражениях и их преобразованиях;
-
овладеть специальными приёмами решения уравнений,
-
применять аппарат уравнений для решения как текстовых, так и практических задач.
Геометрические фигуры. Измерение геометрических величин
По окончании изучения курса учащийся научится:
-
распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
-
строить углы, определять их градусную меру;
-
распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
-
определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
вычислять объём прямоугольного параллелепипеда и куба.
Учащийся получит возможность:
научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
углубить и развить представления о пространственных геометрических фигурах;
научиться применять понятие развёртки для выполнения практических расчётов.