7


  • Учителю
  • Рабочая программа по математике (3 класс Аргинская И. И.)

Рабочая программа по математике (3 класс Аргинская И. И.)

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСУ МАТЕМАТИКИ


Курс математики, являясь частью системы развивающего обучения Л.В. Занкова, отражает характерные ее черты, сохраняя при этом свою специфику. Содержание курса направлено на решение следующих задач, предусмотренных ФГОС 2009 г. и отражающих планируемые результаты обучения математике в начальных классах:

  • научить использовать начальные математические знания для описания окружающих предметов, процессов, явлений, оценки количественных и пространственных отношений;

  • создать условия для овладения основами логического и алгоритмического мышления, пространственного воображения и математической речи, приобретения навыков измерения, пересчета, прикидки и оценки, наглядного представления о записи и выполнении алгоритмов;

  • приобрести начальный опыт применения математических знаний для решения учебно-познавательных и учебно-практических задач;

  • научить выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, действовать в соответствии с алгоритмом и строить простейшие алгоритмы, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами и диаграммами, цепочками, совокупностями, представлять и интерпретировать данные.

Решению названных задач способствует особое структурирование определенного в программе материала.

Курс математики построен на интеграции нескольких линий: арифметики, алгебры, геометрии и истории математики. На уроках ученики раскрывают объективно существующие взаимосвязи, в основе которых лежит понятие числа. Пересчитывая количество предметов и обозначая это количество цифрами, дети овладевают одним из метапредметных умений - счетом. Числа участвуют в действиях (сложение, вычитание, умножение, деление); демонстрируют результаты измерений (длины, массы, площади, объема, вместимости, времени); выражают зависимости между величинами в задачах и т.д. Содержание заданий, а также результаты счета и измерений представляются в виде таблиц, диаграмм, схем.

Числа используются для характеристики и построения геометрических фигур, в задачах на вычисление геометрических величин. Числа помогают установить свойства арифметических действий, знакомят с алгебраическими понятиями: выражение, уравнение, неравенство. Знакомство с историей возникновения чисел, возможность записывать числа, используя современную и исторические системы нумерации, создают представление о математике как науке, расширяющей общий и математический кругозор ученика, формируют интерес к ней, позволяют строить преподавание математики как непрерывный процесс активного познания мира.

Таким образом, цели, поставленные перед преподаванием математики, достигаются в ходе осознания связи между необходимостью описания и объяснения предметов, процессов, явлений окружающего мира и возможностью это сделать, используя количественные и пространственные отношения. Сочетание обязательного содержания и сверхсодержания (см. программу курса), а также многоаспектная структура заданий и дифференцированная система помощи создают условия для мотивации продуктивной познавательной деятельности у всех обучающихся, в том числе и одаренных и тех, кому требуется педагогическая поддержка. Содержательную основу для такой деятельности составляют логические задачи, задачи с неоднозначным ответом, с недостающими или избыточными данными, представление заданий в разных формах (рисунки, схемы, чертежи, таблицы, диаграммы и т.д.), которые способствуют развитию критичности мышления, интереса к

умственному труду.

Программа разработана в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования, Примерной программой по математике для начальной школы и направлена на достижение обучающимися личностных, метапредметных (регулятивных, познавательных и коммуникативных) и предметных результатов.

Содержание курса математики построено с учетом межпредметной, внутрипредметной и надпредметной интеграции, что создает условия для организации учебно-исследовательской деятельности ребенка и способствует его личностному развитию.

ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА МАТЕМАТИКИ


3 КЛАСС

Методологической основой комплекта по курсу «Математика», 3 класс, является фундаментальное психолого-педагогическое исследование проблемы «Обучение и развитие», которое проводилось в течение нескольких десятилетий под руководством Леонида Владимировича Занкова.

Одним из важных практических результатов этого исследования стало создание новой системы начального обучения, направленной на достижение оптимального уровня общего развития младших школьников. Основой созданной системы обучения являются новые дидактические принципы, сформулированные и обоснованные руководителем исследования и сотрудниками его лаборатории:

  1. обучение на высоком уровне трудности (с соблюдением ее меры);

  2. ведущая роль теоретических знаний;

  3. быстрый темп изучения материала;

  4. осознание процесса учения;

  5. продвижение в развитии всех учеников, в том числе и самых сильных, и самых слабых.

Сформулированная в рамках новой дидактической системы концепция методической системы начального обучения и выдвинутые в ней типические свойства многогранности, процессуальности, коллизий и вариантности являются основой методических подходов, использованных в комплекте.

Исходя из общей цели обучения в системе - достижениявысокого уровня общего развития школьников, в учебнике для третьего класса продолжается решение задач, стоящих перед всем курсом математики и обозначенных в объяснительной записке к программе по математике для начальной школы.

Учебник содержит как материал, подлежащий обязательному изучению и усвоению на данном этапе обучения детей в школе, так и расширяющий их общий и математический кругозор.

Включениемногихтемвкурс«Математика»,3класс(«Сложениеивычитаниет рехзначныхчисел»,«Внетабличное умножениеиделение»,«Площадьиееизмерение»,«Разрядыиклассы.Классединицик ласстысяч»ит.д.),традиционнодляначальнойшколы.Этотматериалподлежитпроч номуусвоению.Крометого,вучебникепредставленматериал,связанныйснаблюден иямизаизменениями,происходящимисданнымобъектомприизменениидругого,свя занногоснимобъекта,знакомствосдробнымичислами,измерениеи построениеуглов с помощьютранспортира, раз- нообразнаяработасобъемнымииплоскостнымигеометрическимиобъектами,решен иеипреобразованиезадач,работасразличнымиисточникамиинформации.Рассмотр ениеэтихвопросов закладываетосновы дляизучения матемтикинаследующихступеняхобученияипозволяетболееглубокоиосознанноиз учатьматематикувначальнойшколе.

Важнейшей особенностью учебника «Математика»,3 класс, является ориентация на самостоятельное добывание знаний самими учащимися, в связи с чем задания или не содержат образцов решения поставленных в учебнике проблем, или они возникают в заключительной части как возможный вариант (варианты) их решения и являются объектом сравнения с достигнутым в процессе самостоятельного поиска результатом обсуждения и обоснованного выбора наилучшего из них.

Следующей важной особенностью учебника является преобладание заданий, требующих использования словесно-образного и словесно-логического уровней мышления, над заданиями, требующими наглядно-действенного и наглядно-образного

уровней, хотя последние также активно используются в случаях, когда этого требует специфика изучаемого вопроса или особенности учеников, с которыми работает учитель.

Еще одна особенность учебника, на которой необходимо остановиться, это последовательность расположения в нем заданий. В противоположность часто встречающемуся тематическому построению в настоящем учебнике рядом стоящие задания не связаны общей темой, а относятся к разным темам и даже к разным разделам математики, входящим в этот, по существу, интегрированный курс начальной школы. В результате такого расположения на каждом уроке ученики выполняют различные по характеру учебного содержания и видам деятельности задания. Это позволяет постоянно возвращаться к уже освоенному учебному материалу на новом уровне сложности или к его рассмотрению с новой точки зрения, что способствует уяснению изучаемых вопросов всеми учениками, углублению и расширению полученных знаний. Выполнение на уроке разнообразных по содержанию заданий стимулирует познавательный интерес, повышает положительную мотивацию школьников, снижает уровень утомляемости.

Особенностью учебника является также само построениеего заданий. Подавляющее их большинство представляет достаточно подробную методическую проработкуодного (а иногда и нескольких) варианта решения вопроса, которому оно посвящено.


ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБУЧАЮЩИМИСЯ ПРОГРАММЫ 3 КЛАССА


Личностные универсальные учебные действия У обучающегося будут сформированы:

  • внутренняя позиция школьника на уровне положительного отношения к урокам математики, к школе;

  • понимание значения математики в собственной жизни;

  • интерес к предметно-исследовательской деятельности, предложенной в учебнике и учебных пособиях;

  • ориентация на понимание предложений и оценок учителей и товарищей, на самоанализ и самоконтроль результата;

  • понимание оценок учителя и одноклассников на основе заданных критериев успешности учебной деятельности;

  • восприятие нравственного содержания поступков окружающих людей;

  • этические чувства на основе анализа поступков одноклассников и собственных поступков;

  • общее представление о понятиях «истина», «поиск истины».

Обучающийся получит возможность для формирования:

  • широкого интереса к познанию математических фактов, количественных отношений, математических зависимостей в окружающем мире, способам решения познавательных задач в области математики;

  • восприятия эстетики логического умозаключения, точности математического языка;

  • ориентации на анализ соответствия результатов требованиям конкретной учебной задачи;

  • адекватной самооценки на основе заданных критериев успешности учебной деятельности;

  • чувства сопричастности к математическому наследию России, гордости за свой народ;

  • ориентации в поведении на принятые моральные нормы;

  • понимания важности осуществления собственноговыбора.

Регулятивные универсальные учебные действия Обучающийся научится:

  • принимать и сохранять учебную задачу, понимать смысл инструкции учителя и вносить в нее коррективы;

  • планировать свои действия в соответствии с учебными задачами, различая способ и результат собственных действий;

  • самостоятельно находить несколько вариантов решения учебной задачи, представленной на наглядно-образном уровне;

  • выполнять действия (в устной форме), опираясь на заданный учителем или сверстниками ориентир;

  • осуществлять пошаговый контроль под руководством учителя и самостоятельно;

  • адекватно воспринимать оценку своей работы учителями;

  • осуществлять самооценку своего участия в разных видах учебной деятельности;

  • принимать участие в групповой работе;

  • выполнять учебные действия в устной, письменной речи.

Обучающийся получит возможность научиться:

  • понимать смысл предложенных в учебнике заданий, в т.ч. заданий, развивающих смекалку;

  • самостоятельно находить несколько вариантов решения учебной задачи;

  • выполнять действия (в устной, письменной форме и во внутреннем плане) в опоре на заданный в учебнике ориентир;

  • на основе результатов решения практических задач в сотрудничестве с учителем и одноклассниками делать несложные теоретические выводы о свойствах изучаемых математических объектов;

  • контролировать и оценивать свои действия при работе с наглядно-образным, словесно- образным и словесно-логическим материалом при сотрудничестве с учителем, одно классниками;

  • самостоятельно адекватно оценивать правильность выполнения действия и вносить необходимые коррективыв действия.


Познавательные универсальные учебные действия Обучающийся научится:

  • самостоятельно осуществлять поиск необходимой информации при работе с учебником, в справочной литературе и дополнительных источниках, в т.ч. под руководством учителя, в контролируемом пространстве Интернета;

  • кодировать информацию в знаково-символической или графической форме;

  • на основе кодирования информации самостоятельно строить модели математических понятий, отношений, задач-ных ситуаций;

  • строить небольшие математические сообщения в устной и письменной форме;

  • проводить сравнение (последовательно по нескольким основаниям; наглядное и по представлению; сопоставление и противопоставление), самостоятельно строить выводы на основе сравнения;

  • осуществлять анализ объекта (по нескольким существенным признакам);

  • проводить классификацию изучаемых объектов (самостоятельно выделять основание классификации, находить разные основания для классификации, проводить разбиение объектов на группы по выделенному основанию);

  • выполнять эмпирические обобщения на основе сравнения единичных объектов и выделения у них сходных признаков;

  • проводить аналогию и на ее основе строить и проверять выводы по аналогии;

  • строить индуктивные и дедуктивные рассуждения (формулирование общего вывода на основе сравнения нескольких объектов о наличии у них общих свойств; на основе анализа

учебной ситуации и знания общего правила формулировать вывод о свойствах единичных изучаемых объектов);

  • понимать действие подведения под понятие (для изученных математических понятий);

  • с помощью педагога устанавливать отношения между понятиями (родо-видовые, отношения пересечения, причинно-следственные).

Обучающийся получит возможность научиться:

  • самостоятельно осуществлять поиск необходимой и дополнительной информации в открытом информационном пространстве;

  • моделировать задачи на основе анализа жизненных сюжетов;

  • самостоятельно формулировать выводы на основе аналогии, сравнения, обобщения;

  • проводить сравнение, сериацию и классификацию изученных объектов по заданным критериям;

  • расширять свои представления о математических явлениях;

  • проводить цепочку индуктивных и дедуктивных рассуждений при обосновании изучаемых математических фактов;

  • осуществлять действие подведения под понятие (для изученных математических понятий; в новых ситуациях);

  • пользоваться эвристическими приемами для нахождения решения математических задач.


Коммуникативные универсальные учебные действия Обучающийся научится:

  • принимать участие в работе парами и группами, используя речевые и другие коммуникативные средства, строить монологические высказывания, владеть диалогической формой коммуникации;

  • допускать существование различных точек зрения, учитывать позицию партнера в общении;

  • координировать различные мнения о математических явлениях в сотрудничестве; приходить к общему решению в спорных вопросах;

  • использовать правила вежливости в различных ситуациях;

  • адекватно использовать речевые средства для решения различных коммуникативных задач при изучении математики;

  • контролировать свои действия в коллективной работе и понимать важность их правильного выполнения (от каждого в группе зависит общий результат);

  • задавать вопросы, использовать речь для передачи информации, для регуляции своего действия и действий парт-нера;

  • понимать необходимость координации совместных действий при выполнении учебных и творческих задач; стремиться к пониманию позиции другого человека.

Обучающийся получит возможность научиться:

  • корректно формулировать и обосновывать свою точку зрения; строить понятные для партнера высказывания;

  • адекватно использовать средства общения для решения коммуникативных задач;

  • аргументировать свою позицию и соотносить ее с позициями партнеров;

  • понимать относительность мнений и подходов к решению задач;

  • стремиться к координации различных позиций в сотрудничестве;

  • контролировать свои действия и соотносить их с действиями других участников коллективной работы;

  • осуществлять взаимный контроль и анализировать совершенные действия;

  • активно участвовать в учебно$познавательной деятельности; задавать вопросы, необходимые для организации собственной деятельности;

  • продуктивно сотрудничать со сверстниками и взрослыми на уроке и во внеурочной деятельности.

Обучающийся научится:

Предметные результаты

Числа и величины

  • читать и записывать любое натуральное число в пределах класса единиц и класса тысяч, определять место каждого из них в натуральном ряду;

  • устанавливать отношения между любыми изученными натуральными числами и записывать эти отношения с помощью знаков;

  • выявлять закономерность ряда чисел, дополнять егов соответствии с этой закономерностью;

  • классифицировать числа по разным основаниям, объяснять свои действия;

  • представлять любое изученное натуральное число в виде суммы разрядных слагаемых;

  • находить долю от числа и число по его доле;

  • выражать массу, используя различные единицы измерения: грамм, килограмм, центнер, тонна;

  • применять изученные соотношения между единицами измерения массы: 1 кг = 1000 г, 1 ц = 100 кг, 1 т = 10 ц, 1 т = 1000 кг.

Обучающийся получит возможность научиться:

  • читать и записывать дробные числа, понимать и употреблять термины: дробь, числитель, знаменатель;

  • находить часть числа (две пятых, семь девятых и т.д.);

  • изображать изученные целые числа на числовом (координатном) луче;

  • изображать доли единицы на единичном отрезке координатного луча;

  • записывать числа с помощью цифр римской письменной нумерации C, L, D, М.

Арифметические действия

Обучающийся научится:

  • выполнять сложение и вычитание в пределах шестизначных чисел;

  • выполнять умножение и деление многозначных чисел на однозначное число;

  • выполнять деление с остатком;

  • находить значения сложных выражений, содержащих 2-3 действия;

  • решать уравнения на нахождение неизвестного компонента действия в пределах изученных чисел.

Обучающийся получит возможность научиться:

  • выполнять сложение и вычитание величин (длины, массы, вместимости, времени, площади);

  • изменять результат арифметического действия при изменении одного или двух компонентов действия;

  • решать уравнения, требующие 1-3 тождественных преобразования на основе взаимосвязи между компонентамидействий;

  • находить значение выражения с переменной при заданном ее значении (сложность выражений 1-3 действия);

  • находить решения неравенств с одной переменной разными способами;

  • проверять правильность выполнения различных заданий с помощью вычислений;

  • выбирать верный ответ задания из предложенных.

Работа с текстовыми задачами

Обучающийся научится:

  • выполнять краткую запись задачи, используя различные формы: таблицу, чертеж, схему и т.д.;

  • выбирать действия и их порядок и обосновывать свой выбор при решении составных задач в 2-3 действия;

  • решать задачи, рассматривающие процессы движения одного тела (скорость, время, расстояние), работы (производительность труда, время, объем работы);



 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал