- Учителю
- Тренировочные задания ЕГЭ. Задачи на смеси и сплавы.
Тренировочные задания ЕГЭ. Задачи на смеси и сплавы.
Ладяева Г.Ю., учитель математики
ГБОУ СОШ №3 г.Нефтегорска,
учитель высшей категории
Тренировочные упражнения, используемые при повторении и обобщении учебного материала по математике при подготовке к ЕГЭ
</ Задачи на смеси и сплавы.
-
Задача 1. В сосуд, содержащий 5 литров 12 процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора? Ответ:5
-
В сосуд, содержащий 5 литров 16-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора? Ответ:8
-
В сосуд, содержащий 9 литров 25-процентного водного раствора некоторого вещества, добавили 6 литров воды. Сколько процентов составляет концентрация получившегося раствора? Ответ:15
-
Задача 2. Сколько литров воды нужно добавить в 2 л водного раствора, содержащего 60% кислоты, чтобы получить 20 процентный раствор кислоты? Ответ:4
-
Сколько кг воды нужно добавить к 18% раствору соли массой 8кг, чтобы получить новый раствор с 16% содержанием соли? Ответ:1
-
Задача 3. Смешали 4 литра 15 процентного водного раствора с 6 литрами 25 процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора. Ответ:21
-
Смешали некоторое количество 19-процентного раствора некоторого вещества с таким же количеством 13-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора? Ответ:16
-
Смешали некоторое количество 18-процентного раствора некоторого вещества с таким же количеством 14-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора? Ответ:16
-
Задача 4. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 40 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды? Ответ:380
-
Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 90 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды? Ответ:855
-
Влажность сухой цементной смеси на складе составляет 18%. Во время перевозки из-за дождей влажность смеси повысилась на 2%. Найдите массу привезенной смеси, если со склада было отправлено 400 кг. Ответ:410
-
Собрали 140кг грибов, влажность которых составила 98%. После первоначального подсушивания их влажность снизилась до 93%. Какова стала масса грибов после подсушивания? Ответ: 40
-
Свежие грибы содержат по весу 90% воды, а сухие - 12% воды. Сколько получится сухих грибов из 22кг свежих грибов? Ответ: 2,5
-
Задача 5. Имеется два сплава. Первый содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго? Ответ:120
-
Имеется два сплава. Первый содержит 10% никеля, второй - 40% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго? Ответ:75
-
Имеется два сплава. Первый содержит 10% никеля, второй- 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго? Ответ:100
-
Задача 6. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. Ответ:10
-
Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. Ответ: 9
-
Задача 7. Смешав 54-процентный и 61-процентный растворы кислоты и добавив 10 кг чистой воды, получили 46-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 56-процентный раствор кислоты. Сколько килограммов 54-процентного раствора использовали для получения смеси? Ответ:20
-
Смешав 8-процентный и 96-процентный растворы кислоты и добавив 10 кг чистой воды, получили 32-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 36-процентный раствор кислоты. Сколько килограммов 8-процентного раствора использовали для получения смеси? Ответ:80
-
Первый раствор содержит 40% кислоты, а второй - 60% кислоты. Смешав эти растворы и добавив 5 л воды, получили 20 процентный раствор. Если бы вместо воды добавили 5 л 80 процентного раствора, то получился бы 70 процентный раствор. Сколько литров 60 процентного раствора кислоты было первоначально? Ответ:1,25
-
Задача 8. Имеется два сосуда. Первый содержит 100 кг, а второй - 60 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 19% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 22% кислоты. Сколько килограммов кислоты содержится в первом сосуде? Ответ:10
-
Имеется два сосуда. Первый содержит 10 кг, а второй - 5 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 56% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 64% кислоты. Сколько килограммов кислоты содержится в первом сосуде? Ответ:40
-
Задача 9. Имеются два слитка сплава серебра и олова. Первый слиток содержит 360г серебра и 40г олова, а второй слиток - 450г серебра и 150г олова. От каждого слитка взяли по куску, сплавили их и получили 200г сплава, в котором оказалось 81% серебра. Определите массу (в граммах) куска, взятого от второго слитка. Ответ:120