- Учителю
- Рабочая программа по геометрии 8 класс
Рабочая программа по геометрии 8 класс
РЕСПУБЛИКА КРЫМ
КРАСНОГВАРДЕЙСКИЙ РАЙОН
МБОУ «АМУРСКАЯ ШКОЛА
«Рассмотрено» «Согласовано» «Утверждаю»
Руководитель МО Зам.директора по УВР Директор ______ /ВеличкоС.В./ _________/Блинова Т.И./ ______/Исмаилова М.А/ Протокол № ___ от «__» ________2015г. Приказ №_____ от
«__» ________2015г «__» ________2015г
РАБОЧАЯ ПРОГРАММА ПЕДАГОГА
Блиновой Тамары Ивановны, учителя I категории
ПО ГЕОМЕТРИИ(базовый)
8 класс
Рассмотрено на заседании
педагогического совета
протокол № _________ от
«___»____________2015г.
2015-2016 учебный год
с.Амурское
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Данная программа предназначена для общеобразовательных учреждений основного общего образования в 8 классе.
Программа рассчитана на 68 учебных часа.
Нормативные документы для составления рабочей программы :
1. Стандарт основного общего образования по математике.
Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.
2. Геометрия. Сборник рабочих программ 7 - 9 классы/Сост. Т.А. Бурмистрова - Москва: «Просвещение», 2014.
3. Федерального компонента государственного образовательного стандарта (Приказ Минобразования РФ от 05.03.2004 года № 1089)
4. Федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на текущий учебный год;
-
С учетом требований к оснащению образовательного процесса в соответствии с содержанием учебных предметов компонента государственного стандарта общего образования;
-
Учебник «Геометрия 7-9» для образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. - М.: Просвещение, 2014 г.
-
Учебного плана МБОУ «Амурская школа» на 2015-2016 учебный год
-
Рабочей программой МБОУ «Амурская школа» на 2015-2016 учебный год
-
Сборник рабочих программ «Геометрия 7-9 классы», Бурмистрова, Москва, « Просвещение» 2011 год., пособие для учителя.
Геометрия- один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.
Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда - планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.
Цели и задачи учебного предмета:
Изучение геометрии на ступени основного общего образования направлено на достижение следующих целей:
• овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
• интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственного мышления и воображения, способности к преодолению трудностей;
• формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
• воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии; приобретение опыта планирования и осуществления алгоритмической деятельности;
освоение навыков и умений проведения доказательств, обоснования выбора решений; приобретение умений ясного и точного изложения мыслей;
развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии; научить пользоваться геометрическим языком для описания предметов
Цели
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
-
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
-
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
-
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
-
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.
Задачи курса:
- научить пользоваться геометрическим языком для описания предметов;
- начать изучение многоугольников и их свойств, научить находить их площади;
- ввести теорему Пифагора и научить применять её при решении прямоугольных треугольников;
- ввести тригонометрические понятия синус, косинус и тангенс угла в прямоугольном треугольнике научить применять эти понятия при решении прямоугольных треугольников;
- ввести понятие подобия и признаки подобия треугольников, научить решать задачи на применение признаков подобия;
- ознакомить с понятием касательной к окружности.
Данная рабочая программа ориентирована на использование следующего учебно - методического комплекта «Геометрия 7-9» для образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. - М.: Просвещение, 2014 г.
Общая характеристика учебного предмета
Согласно учебному плану для образовательных учреждений Российской Федерации на изучение геометрии в 8 классе отводится 68 часов из расчёта 2 часа в неделю. На изучение курса в соответствии с программой Бурмистровой Т. А. «Программы общеобразовательных учреждений. Геометрия. 7-9 классы. М.: Просвещение, 2014 отводится 68 часов (2 часа в неделю).
Основные цели курса:
В курсе геометрии 8 класса условно выделены четыре основных раздела: четырёхугольники, площадь, подобные треугольники, окружность.
Цели изучения курса геометрии в 8 классе:
-
создание условий для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки;
-
создание условий для умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи;
-
формирование умения использовать различные языки математики: словесный, символический, графический;
-
формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства;
-
создание условий для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность;
-
формирование умения использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных;
-
сформировать понятие основных плоских геометрических фигур и их свойств.
Задачи изучения курса геометрии в 8 классе:
-
подготовить учащихся к изучению курса геометрии в 8 классе;
-
систематизировать сведения о четырёхугольниках;
-
сформировать представления о фигурах, симметричных относительно точки и прямой;
-
сформировать понятие площади многоугольника;
-
развить умение вычислять площади фигур;
-
сформировать понятие подобных треугольников;
-
выработать умение применять признаки подобия в процессе доказательства теорем и решении задач;
-
сформировать навыки решения прямоугольных треугольников;
-
расширить сведения об окружности.
В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических фактов. Теорема о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируются практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Вводятся первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Систематизируются сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, выполнять простые доказательства, давать обоснования выполняемых действий.
Место учебного предмета в учебном плане МБОУ «Амурская школа»
Учебный предмет относится к образовательной области: Математика. Реализуется за счет инвариантной части учебного плана. Изучается на базовом уровне в8 классе 2 часа в неделю: 68ч. в год.
Требования к уровню подготовки учащихся
В результате изучения курса геометрии 8 класса обучающиеся должны:
знать
-
существо понятия математического доказательства; примеры доказательств;
-
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
-
как потребности практики привели математическую науку к необходимости расширения понятия числа;
-
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
уметь
-
пользоваться языком геометрии для описания предметов окружающего мира;
-
распознавать геометрические фигуры, различать их взаимное расположение;
-
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
-
вычислять значения геометрических величин (длин, углов, площадей), в том числе: для углов от 0 до 90 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
-
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
-
решать простейшие планиметрические задачи;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
описания реальных ситуаций на языке геометрии;
-
расчетов, включающих простейшие формулы;
-
решения геометрических задач с использованием тригонометрии;
-
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
-
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Общеучебные умения, навыки и способы деятельности
В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
-
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
-
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
-
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
-
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
-
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
Содержание учебного курса
Раздел 1. Четырёхугольники.
Доказательства большинства теорем данного раздела и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы. Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.
Цели изучения раздела:
• изучить наиболее важные виды четырехугольников - параллелограмм, прямоугольник, ромб, квадрат, трапецию;
• дать представление о фигурах, обладающих осевой или центральной симметрией;
Раздел 2. Площадь.
Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для учащихся. Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.
Цели изучения раздела:
• расширить и углубить полученные в 5 - 6 классах представления учащихся об измерении и вычислении площадей;
• вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции;
• доказать одну из главных теорем геометрии - теорему Пифагора.
Раздел 3. Подобные треугольники.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон. Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу. На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение. В заключение темы вводятся элементы тригонометрии - синус, косинус и тангенс острого угла прямоугольного треугольника.
Цели изучения раздела:
• ввести понятие подобных треугольников;
• рассмотреть признаки подобия треугольников и их применения к доказательству теорем и решению задач;
• сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Раздел 4. Окружность.
В данном разделе вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров. Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.
Цели изучения раздела:
• расширить сведения об окружности, полученные учащимися в 6 классе;
• изучить новые факты, связанные с окружностью;
• познакомить учащихся с четырьмя замечательными точками треугольника.
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА
Содержание материала
Количество часов
Характеристика основных видов деятельности обучающегося (на уровне учебных действий)
-
Четырёхугольники
14
Многоугольники. Параллелограмм и трапеция. Прямоугольник, ромб квадрат.
Объяснять, что такое ломаная, многоугольник, его вершины, смежные стороны, диагонали, изображать и распознавать многоугольники на чертежах; показывать элементы многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники; формулировать и доказывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вершины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеции, прямоугольника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверждения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно точки (прямой), в каком случае фигура называется симметричной относительно прямой (точки) и что такое ось (центр) симметрии фигуры; приводить примеры фигур, обладающих осевой (центральной) симметрией, а также примеры осевой и центральной симметрии в окружающей нас обстановке.
-
Площадь
14
Площадь многоугольника. Площади параллелограмма, треугольника и трапеции. Теорема Пифагора.
Объяснять, как производится измерение площадей многоугольников, какие многоугольники называются равновеликими и какие равносоставленными; формулировать основные свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и теоремой Пифагора.
-
Подобные треугольники
19
Определение подобных треугольников. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Соотношения между сторонами и углами прямоугольного треугольника.
Объяснять понятие пропорциональности отрезков; формулировать определения подобных треугольников и коэффициента подобия; формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике ; объяснять, что такое метод подобия в задачах на построение, и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснять, как ввести понятие подобия для произвольных фигур; формулировать определение и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника; выводить основные тригонометрическое тождество и значения синуса, косинуса и тангенса для углов ; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютерные программы.
-
Окружность.
17
Касательная к окружности. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Исследовать взаимное расположение прямой и окружности; формулировать определение касательной к окружности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках касательных, проведённых к окружности из одной точки; формулировать понятие центрального угла и градусной меры дуги окружности; формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы , связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треугольника; формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника;формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной около треугольника; о свойстве сторон описанного четырёхугольника; о свойстве углов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырёхугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.
-
Повторение
2
Тематический план
На изучение геометрии в 8классе выделено в учебном плане 2 ч, 68 ч в год.
Предусмотрено проведение плановых контрольных работ
Итоговая и промежуточная аттестация проводится в форме контрольной работы, тестов, самостоятельных работ, зачётов.
Содержание обучения, перечень контрольных работ, требования к подготовке учащихся по предмету в полном объеме совпадают с авторской программой по предмету. Программа рассчитана на один год.
№
содержание учебного материала
Кол-во часов
1.
Четырехугольники
14
2.
Площадь
14
3.
Подобные треугольники
19
4.
Окружность
17
5.
Повторение
4
Итого:
68
Календарно-тематическое планирование учебного материала
(2 часа в неделю. Всего 68 часов)
№ урока
№ пункта
учебника
Тема урока
Кол-во
часов
Дата проведения урока
Повторение
по плану
примечание
1
Урок вводного повторения.
1
2
Диагностическая работа.
1
3-16
Четырёхугольники
14
3
40,41
Многоугольник. Выпуклый многоугольник.
1
4
Сумма внутренних углов многоугольника.
1
5-6
42,43
Четырёхугольник. Параллелограмм и его свойства.
2
7-8
44
Признаки параллелограмма.
2
9
Самостоятельная работа.
1
10
45
Трапеция.
1
11
46
Прямоугольник.
1
12-13
47
Ромб, квадрат.
2
14
Решение задач по теме повышенной сложности.
1
15
Самостоятельная работа.
1
16
Контрольная работа №1 «Четырёхугольники»
1
17-30
Площадь
14
17
49
Понятие площади многоугольника.
1
18
51
Площадь прямоугольника.
1
19-20
52
Площадь параллелограмма.
2
21-22
53
Площадь треугольника.
2
23
54
Площадь трапеции.
1
24
Самостоятельная работа.
1
25-27
55,56
Теорема Пифагора. Теорема, обратная теореме Пифагора.
3
28
57
Формула Герона.
1
29
Самостоятельная работа.
1
30
Контрольная работа № 2 «Площадь»
1
31-49
Подобные треугольники
19
31
58,59
Пропорциональные отрезки. Определение подобных треугольников.
1
32
60
Отношение площадей подобных треугольников. Решение задач.
1
33
61
Первый признак подобия треугольников.
1
34
62
Второй признак подобия треугольников.
1
35
63
Третий признак подобия треугольников.
1
36
Самостоятельная работа.
1
37
Анализ самостоятельной работы. Решение задач.
1
38
Контрольная работа №3 «Подобие треугольников»
1
39
64
Средняя линия треугольника.
1
40-42
65, 66
Пропорциональные отрезки в прямоугольном треугольнике.
3
43
Самостоятельная работа.
1
44-47
68
Синус, косинус и тангенс острого угла прямоугольного треугольника. Проверочная работа.
4
48
69
Значения синуса, косинуса и тангенса стандартных углов.
1
49
Контрольная работа №4 «Решение прямоугольных треугольников»
1
50-66
Окружность
17
50
70
Взаимное расположение прямой и окружности.
1
51
71
Касательная к окружности.
1
52-55
72-73
Градусная мера дуги окружности. Теорема о вписанном угле.
4
56
Самостоятельная работа.
1
57-59
74-76
Четыре замечательные точки треугольника.
3
60-63
77-78
Вписанная и описанная окружности.
4
64
Самостоятельная работа.
1
65
Анализ самостоятельной работы. Решение задач.
1
66
Контрольная работа №5 «Окружность »
1
67-68
Повторение
2
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
-
работа выполнена полностью;
-
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
-
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
-
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
-
допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
-
допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
-
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2. Оценка устных ответов обучающихся по математике.
Ответ оценивается отметкой «5», если ученик:
-
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
-
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
-
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
-
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
-
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
-
отвечал самостоятельно, без наводящих вопросов учителя;
-
возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
-
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
-
допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
-
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
-
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;
-
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
-
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
-
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
-
не раскрыто основное содержание учебного материала;
-
обнаружено незнание учеником большей или наиболее важной части учебного материала;
-
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Литература:
-
Атанасян Л.С., Бутузов В.Ф. и др. Геометрия 7 - 9. Учебник для общеобразовательных учреждений. М.: Просвещение, 2014.
-
Геометрия:Рабочая тетрадь:8 кл./Л.С.Атанасян, В.Ф.Бутузов, Ю.А.Глазков, И.И.Юдина.- М.:Просвещение,2011
-
Зив Б.Г. Геометрия:дидакт.материалы:8 кл./Б.Г.Зив, В.М.Мейлер.- М.:Просвещение,2011
-
Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2003 - 2011
-
Электронное приложение к учебнику