7


  • Учителю
  • Рабочая программа по учебнику Ю. Н. Макарычев, геометрия Л. С. Атанасян

Рабочая программа по учебнику Ю. Н. Макарычев, геометрия Л. С. Атанасян

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

РАБОЧАЯ ПРОГРАММА

по учебному курсу «Математика» для 7 класса

Пояснительная записка.

Рабочая программа по курсу «Математика» для 7 классов составлена:

- на основе федерального компонента государственного стандарта основного общего образования ,

- примерной программы по математике основного общего образования,

- федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2013-2014 учебный год,

- календарно - тематического планирования учебного материала,

- Программа соответствует учебникам:

- Алгебра: Учеб. для 7 кл. общеобразоват. учреждений Ю. Н. Макарычев, Н. Г. Миндюк под редакцией С. А. Теляковского. М. «Просвещение» - 2010.

- Учебник «Геометрия, 7-9», Л. С. Атанасян и др. М. «Просвещение» - 2011

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится 5 ч в неделю в 7 классе. Из них на геометрию 52 часов в год, на алгебру 123 часов в год. Всего 175 часов в год.изучение геометрии начать с первой четверти

Контрольных работ всего - 16

ОСНОВНЫЕ ЦЕЛИ

Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ

В результате изучения математики ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждения о них, важных для практики;

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур; распознавать на чертежах, моделях и в окружающей обстановке основные фигуры, изображать их;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; решать простейшие планиметрические задачи;


  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;

  • описания реальных ситуаций на языке геометрии;

  • решения геометрических задач;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).


СОДЕРЖАНИЕ ОБУЧЕНИЯ

АЛГЕБРА


Вводное повторение(5)


1. Выражения и их преобразования. Уравнения (18)

Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.

2. Функции (15)

Функция, область определения функции, Способы задания функции. График функции. Функция y=kx+b и её график. Функция y=kx и её график.

3. Степень с натуральным показателем (17)

Степень с натуральным показателем и её свойства. Одночлен. Функции y=x2, y=x3, и их графики.

4. Многочлены 19

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.

5. Формулы сокращённого умножения (20)

Формулы . Применение формул сокращённого умножения к разложению на множители.

6. Системы линейных уравнений (19)

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений..

7. Статистические характеристики(4).

Среднее арифметическое, мода, медиана, размах.

8. Повторение. Решение задач ( 6)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).

В результате изучения геометрии ученик должен

знать:

  • существо понятия математического доказательства; приводить примеры доказательств;

  • существо понятия алгоритма; приводить примеры алгоритма;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них , важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования

  • решать простейшие планиметрические задачи в пространстве;

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • решения практических задач, связанных с нахождением геометрических величин ( используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами ( линейка, угольник, циркуль, транспортир).

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ по геометрии 7 класса (52 часов)

1. Начальные геометрические сведения (7 ч)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол.

Понятие равенства геометрических фигур.

Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла.

Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Основная цель - систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики 1-6 классов геометрических фактов.

Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме.

Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения.

Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Учащиеся должны уметь:

  • формулировать определения и иллюстрировать понятия отрезка, луча; угла, прямого, острого, тупого и развернутого углов; вертикальных и смежных углов; биссектрисы угла;

  • формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов;

  • формулировать определения перпендикуляра к прямой;

  • решать задачи на доказательство и вычисления, применяя изученные определения и теоремы;

  • опираясь на условие задачи, проводить необходимые доказательные рассуждения;

  • сопоставлять полученный результат с условием задачи.

Перечень контрольных мероприятий:

Контрольная работа №1 «Начальные геометрические сведения»

2. Треугольники (14 ч)

Треугольник. Признаки равенства треугольников.

Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника.

Равнобедренный треугольник и его свойства.

Задачи на построение с помощью циркуля и линейки.

Основная цель - ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач - на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников - обоснование их равенства с помощью какого-то признака - следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Учащиеся должны уметь:

  • распознавать на чертежах, формулировать определения, изображать равнобедренный, равносторонний треугольники; высоту, медиану, биссектрису;

  • формулировать определение равных треугольников;

  • формулировать и доказывать теоремы о признаках равенства треугольников;

  • объяснять и иллюстрировать неравенство треугольника;

  • формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника,

  • моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения;

  • решать задачи на доказательство и вычисления, применяя изученные определения и теоремы;

  • опираясь на условие задачи, проводить необходимые доказательные рассуждения;

  • интерпретировать полученный результат и сопоставлять его с условием задачи;

  • решать основные задачи на построение с помощью циркуля и линейки: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на и равных частей.

Перечень контрольных мероприятий:

Контрольная работа №2 «Треугольники»

3. Параллельные прямые (9 ч)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель - ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Учащиеся должны уметь:

  • распознавать на чертежах, изображать, формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендикуляра и наклонной к прямой; серединного перпендикуляра к отрезку;

  • формулировать аксиому параллельных прямых;

  • формулировать и доказывать теоремы, выражающие свойства и признаки параллельных прямых;

  • моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения;

  • решать задачи на доказательство и вычисления, применяя изученные определения и теоремы;

  • опираясь на условие задачи, проводить необходимые доказательные рассуждения;

  • интерпретировать полученный результат и сопоставлять его с условием задачи.

Перечень контрольных мероприятий:

Контрольная работа №3 «Параллельные прямые»

4. Соотношения между сторонами и углами треугольника (16 ч)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника.

Неравенство треугольника.

Прямоугольные треугольники, их свойства и признаки равенства.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Построение треугольника по трем элементам.

Основная цель - рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии - теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи. Учащиеся должны уметь:

  • распознавать на чертежах, формулировать определения, изображать прямоугольный, остроугольный, тупоугольный;

  • формулировать и доказывать теоремы

  • о соотношениях между сторонами и углами треугольника,

  • о сумме углов треугольника,

  • о внешнем угле треугольника;

  • формулировать свойства и признаки равенства прямоугольных треугольников;

  • решать задачи на построение треугольника по трем его элементам с помощью циркуля и линейки.

Перечень контрольных мероприятий:

Контрольная работа №4 «Соотношения между сторонами и углами треугольника»

Контрольная работа №5 «Прямоугольные треугольники. Построение треугольника по трем элементам»

5. Повторение (6ч)


Литература:

1. Алгебра, 7 класс. В 2 ч. Учебник и задачник для общеобразовательных учреждений / А.Г.Мордкович: Мнемозина, 2010-2013.

2. Геометрия, 7 - 9. Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.: Просвещение, 2010-2013

3. События. Вероятности. Статистическая обработка данных. Доп. Параграфы к курсу алгебры 7 - 9 классов общеобразовательных учреждений / А.Г. Мордкович, П.В.Семенов: Мнемозина, 2010.

4. Алгебра. 7 - 9 кл. Методическое пособие для учителя А.Г. Мордкович: Мнемозина, 2010-2013.

5. Изучение геометрии в 7 - 9 классах. Методические рекомендации к учебнику. Книга для учителя / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков: Просвещение, 2012.

6. Алгебра 7 класс. Контрольные работы для учащихся общеобразовательных учреждений / Л.А. Александрова: Мнемозина, 2010.

7. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений / Л.А. Александрова: Мнемозина, 2010.

8. Алгебра. Тесты для 7 - 9 кл. общеобразовательных учреждений / А.Г. Мордкович, Е.Е. Тульчинская: Мнемозина, 2012-2013.

9. Дидактические материалы по геометрии для 7 класса / Б.Г. Зив, В.М. Мейлер: Просвещение 2010.

10. Самостоятельные и контрольные работы по алгебре и геометрии для 7 класса / А.П. Ершова, В.В. Голобородько, А.С. Ершов: Илекса, 2010-2013



 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал