- Учителю
- Самостоятельная работа по теме Теория вероятности
Самостоятельная работа по теме Теория вероятности
Вариант 1. |
Вариант 2. |
1. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 70% этих стекол, вторая - 30%. Первая фабрика выпускает 3% бракованных стекол, а вторая - 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным. |
1. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая - 55%. Первая фабрика выпускает 1% бракованных стекол, а вторая - 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным. |
2. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,53. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза. |
2. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,54. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,31. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза. |
3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,1. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем. |
3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,1. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,35. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем. |
4. В торговом центре два одинаковых автомата продают жвачку. Вероятность того, что к концу дня в автомате закончится жвачка, равна 0,4. Вероятность того, что жвачка закончится в обоих автоматах, равна 0,14. Найдите вероятность того, что к концу дня жвачка останется в обоих автоматах. |
4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,18. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах. |
5. Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,55. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние три промахнулся. Результат округлите до сотых. |
5. Биатлонист 8 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние шесть промахнулся. Результат округлите до сотых. |
6. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен. |
</<b>6. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,12 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
|
7. Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными. |
7. Вероятность того, что батарейка бракованная, равна 0,03. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными |