7


  • Учителю
  • Некоторые приемы устных вычислений, основанные на законах и свойствах арифметических действий.

Некоторые приемы устных вычислений, основанные на законах и свойствах арифметических действий.

Автор публикации:
Дата публикации:
Краткое описание: Формирование вычислительных навыков – очень трудоемкая работа. В целях выработки прочных навыков рекомендуется проводить устную работу на уроке. Такие вычисления помогают учителю дисциплинировать учащихся, воспитывать у них навыки самостоятельности, умение ценить и
предварительный просмотр материала

Некоторые приемы устных вычислений, основанные на законах и свойствах

арифметических действий.

1.Замена нескольких слагаемых их суммой

a + b + c = a+(b +с)

274 + 305 + 95 + 125 = 274 + (305 + 95 + 125) = 274 + 525 = 799 (группу слагаемых заключаем с суммой, полученной в скобках, на основании сочетательного закона)

2. Перестановка слагаемых

а + b + с = (а +b) +с

3,18 + 2,09 + 5,82 = (3,18 + 5,82) + 2,09 = 11,09 (по переместительному закону находим ту сумму двух слагаемых, которую вычислить легче)

3. Замена нескольких множителей их произведением

а • Ь • с • d = (а • Ь) • (с • d)

2 5 3 4 1 2 5 3 4 I

- • - • - • - • - = ( - • - ) • (- • - ) • -

5 8 4 9 2 5 8 4 9 2

(на основании сочетательного закона заключаем в скобки те множители, которые удобно

умножить устно)

4. Перестановка множителей

а • b • с • d • е = (а • d) • (Ь • е) • с

5 • 25 • 7 • 4 • 20 = (5 • 20) • (25 • 4) • 7 = 100 • 100 • 7 = 700000

(на основании сочетательного закона и переместительного)

5. Умножение произведения на число

(а • b • с) • d = (а • d) • b • с = (d • b) • а • с =(d • с) • а • b

(0,25 • 46 • 0,3) • 0,2 = 0,25 • 46 • 0,3 • 0,2 = (0,25 • 0,2) • 46 • 0,3 = 0,5 • 46 • 0,3 = 2,3• 3 0 = 0,69

(на основании порядка действий, сочетательного закона и переместительного)

6. Применение распределительного закона умножения

(а + b) • с = ас + be, ас + be = (а + b) с

1 5 3 1 5 3 5 2 2

(- + - + - ) • 4 = - • 4 + -• 4 + - • 4 = 2 + - + 3 = 5 + 1 - = 6 -
2 12 4 2 12 4 3 3 3

Упражнения

In

117 + 3 + 51 + 39 + 61; 476 + 503 + 97 + 120; 2,35 + 5,65 + 1,05 + 4,95; 5,03 + 4,34 + 1,66 + 3;

5 + 305+172

2n

15,1+0,009+1,01+0,9

3n

4 • 25 • 75 • 8, 125 • 4 • 2 • 2 • 5, 250 • 4 • 3 • 5 • 2 , 3,2 • 5 • 6,8 • 4


4n

A.11.2 25 • 20 • 4 • 5 • 3, 50 • 9• 10 • 3, 500 • 12 • 2 • 10 •5, 2,5 • 2,4 • 4 • 5 • 0,2.

'

Приемы, основанные на изменении результата действия в зависимости от изменения компонентов

1 Округление слагаемых

(если одно из слагаемых увеличить (уменьшить) на некоторое число, а другое слагаемое уменьшить (увеличить) на это же число, то сумма не изменится).

49996 + 5063 = (49996 + 4) + (5063 - 4) = 50000 + 5059 = 55059

2. Округление уменьшаемого или вычитаемого.

(если уменьшаемое и вычитаемое увеличить (уменьшить) на одно и то же число, то разность

не изменится)


Упражнения 1п

5720 + 288; 499 + 1 07 + 40; 8000 + 4167 + 1075; 4,07 + 8,9; 1 5, 65 + 2,19.

2п

5073 - 486; 6027 - 4508; 14059 - 2572; 18,08 - 17,73

Приемы умножения и деления на целое число

1.(Если один сомножитель увеличить в несколько раз, а другой уменьшить во столько же раз,

то произведение не изменится)

65 = 5 = (65 - 10): 2 = 650 : 2= 325

706 • 500 = (706 : 2) • 1000 = 353 • 1000 = 353000

2,Чтобы умножить число на 25, 250 и т.д. нужно данное число умножить на 100, 1000 и т.д., а полученный результат разделить на 4.

15 • 250 = (15 • 1000) : 4 = 3750

3.Чтобы разделить данное число на 5, 50 и т.д., нужно это число умножить на 2 и полученное

произведение разделить на 10, 100 и т.д.

85 : 500 = (85 • 2) : 1000 = 164 : 1000 = 0,164

4.Чтобы разделить данное число на 25, 250 и т.д. нужно это число умножить на 4 и полученное произведение разделить на 100, 1000 и т.д.

54 : 25 = (54 • 4): 100 = 216 : 100 = 2,16

Применение приемов устного счета при выполнении письменных работ (387 + 240 - 287) • 50 - (471 + 354 + 29 + 146): 25

Используем переместительный и сочетательный законы сложения, приемы умножения на 50 и деление на 25.

((387 - 287) + 240) • 50 - ((471 + 29 + ( 354 + 146)) : 25 = (100 + 240) • 50 - (500 + +500) : 25 = 340 : 2 •100 - 1000 : 25 = 17000 - 40 = 16960

Сложение столбцами

358 597 Сумма цифр каждого разряда складывается

+439 + 1289 отдельно. Цифра десятков в сумме предыдущего

+746 67382 разряда складывается с цифрой единиц

+932 95895 последующей сумы.

___ _____

25 23

+15 34

23 + 18
____ 13

2475 15

_______

165163

Умножение методом Ферроля Используется тождество:

1.(10а +в)(10с +d) = 100ас + 10(ad +вс) + Bd

37• 48 = 1776 а) 8•7 = 56 пишем 6, помним 5

б) 8•3 + 4•7 + 5=57 пишем 1, помним 5

в) 4•3 + 5 = 17 пишем 17

12•14=168 а) 2•4 = 8

б) 1•2+ 1•4 = 6

в) 1•1 = 1

125•23 = 2875 а) 3•5 = 15 пишем 5, помним 1

б) (3•2 + 2•5) + 1 =17 пишем 7, помним 1

в) (3•2 + 2•2) +1=8 пишем 8

г) 2•1 = 2 пишем 2

2. Используется тождество:

(10а+в)(10с +d) = 100а(а+ 1) + вс, где в + с = 10

13 • 17 = 221 а) 1• (1 + 1) = 2 пишем 2

б) 3 • 7 = 21 приписываем справа 21

204•206 = 42024 а) 20 • (20 + 1) = 420 пишем 420

б) 6 • 4 = 24 приписываем справа 24

3.Умножение чисел на 11
54•11 = 594 а) пишем 4

6)4 + 5=9 пишем 9

в) пишем 5

124•11 = 1(1 + 2)(2 + 4) • 4 = 1364

Если одна из сумм соседних цифр окажется больше 9, то на соответствующим

месте записывают цифру единиц полученной суммы, а к следующей сумме прибавляют 1.

Прибавляют единицу и к последней цифре множителя, если предыдущая

сумма превышала 9.

58•11 = 638 а) пишем 8

б) 5 + 8 =13 пишем 3, помним 1

4. Умножение на числа вида аа

(Умножить данное число сначала на а, потом на 11)

123•55 = (123•5) • 11 = 615•11 = 6(6 + 1)(5 + 1) • 5 = 6765

42•111 = 4(4 + 2)(4+2) •2 4662

86•11 = 7548 а) пишем последнюю цифру 8

б) 6 + 8 = 14 пишем 4, помним 1

в) (6 + 8) + 1 = 15 пишем 5, помним 1
г) 6 + 1 = 7 пишем 7

Умножение однозначного или двузначного числа на 37. Способ обоснован на равенствах дистрибутивности и этими равенствами можно упрощать процесс умножения во всех упомянутых случаях.


6•37 = 37•2•3 =222

8 • 37 = (6 + 2) • 37 = 222 + 74 = 296

45 • 37 = (48 - 3 ) • 37= 12 • 4 • 37 - 3 • 37 = 16 •3 •37 - 3 •37 = 3 •37 (16 - 1) =111•15 = 1665

5.Умножение на 5, 25, 125.

Разделить число соответственно на 2, 4, 8 и результат умножить на 10, 100, 1000

46 • 5 = 46 : 2 • 10 = 230

48•25 = 48:4•100=1200

32 • 125 = 32:8•1000 = 4000

Если множитель не делится нацело на 2, 4, 8, то деление производиться с остатком. Затем частное умножают соответственно на 10, 100, или 1000, а остаток - на 5, 25 или 125.

53 • 5 = 26 • 10 + 1 • 5 =265 (53 : 2 = 26 и 1 остаток)

43 • 25 = 10 •100 + 3 • 25 = 1075 (43 : 4 = 10 и 3 остаток)

6.Деление на 5, 25, 125. Умножить число соответственно на 2, 4, 8 и разделить на 10, 100, 1000.

220 : 5 = 220•2:10 = 44

1300 : 25 = 1300•4: 100 = 52

9250 : 125 = 9250•8: 1000 = 74

Иногда удобно менять порядок действий выполняя сначала деление на 10, 100, 1000, а потом

умножение.

7.Умножение на 9, 99, 999.

К первому множителю приписать столько нулей, сколько девяток, во втором множителе и из результата вычесть первый множитель.

289 • 9 = 2860 - 286 = 2574

23 • 99 = 2300 - 23 = 2274

18• 999=18000-18 = 17982

8.Возведение в квадрат двузначных чисел.

Используя свойство (50 + а)2 =100 • (25 + а) • а2

512 = 2601 а) 25 + 1 = 26 пишем 26

б) I2 = 1 приписываем 01

582 = 3364 а) 25+ 8 =33 б) 82 = 64

9.Использование формул сокращенного умножения (формула разности квадратов)

212 - 202 = (20 + 21)(21-20) = 41

142 - 132 = (14 - 13)(14 + 13) = 27 1022- 552 = ?

(свойство можно использовать тогда, когда данные числа отличаются лишь на 1)

Литература: 1.Е.А.Бугулов «Приемы быстрого счета»

2.Журналы: «Математика в школе» №6, 1987г; №2, 1981г




 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал