7


  • Учителю
  • РАБОЧАЯ ПРОГРАММА НА УРОВЕНЬ 5-9 ПО МАТЕМАТИКЕ ФГОС

РАБОЧАЯ ПРОГРАММА НА УРОВЕНЬ 5-9 ПО МАТЕМАТИКЕ ФГОС

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

Муниципальное бюджетное общеобразовательное учреждение«Рассмотрено»

Руководитель МО

______О.В. Советникова

Протокол №____ от

«___» ___________ 2015г.





«Согласовано»

Заместитель директора

по УР МБОУ «ЗСОШ № 7

с углубленным изучением

отдельных предметов»

________М.К. Валиахметова

«___» ___________ 2015г.



«Утверждаю»

Директор МБОУ «ЗСОШ № 7

с углубленным изучением отдельных предметов»

________З.Г. Бареева

Приказ №______ от

«___» __________ 2015г.



«Заинская средняя общеобразовательная школа №7 с углубленным изучением отдельных предметов» Заинского муниципального района Республики Татарстан













РАБОЧАЯ ПРОГРАММА

основного общего образования

по предмету «Математика»

5-9 классы, базовый уровень

на 2015-2020 годы



Трифоновой Елизаветы Игоревны,

учителя математики первой квалификационной категории

Кошенковой Анны Георгиевны,

учителя математики















Рассмотрено на заседании

педагогического совета

протокол № ____

от «___» _________ 2015г.



2015 год



  1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по математике для 5 - 9 классов разработана в соответствии с нормативными документами, определяющими структуру и содержание курса:



  • Федеральный государственный образовательный стандарт основного общего образования, утвержденный Приказом Министерства образования и науки Российской Федерации от 17.12.2010 № 1897 «Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования»

  • Основная образовательная программа основного общего образования МБОУ «ЗСОШ №7 с углубленным изучением отдельных предметов» на 2015-2020 г.г.;

  • Примерная программа основного общего образования по математике;

  • Авторская программа по математике для 5-6 классов по учебнику С.М.Никольского, М.К.Потапова, Н.Н.Решетникова, А.В. Шевкина - М.: Просвещение, 2015.

  • Авторская программа по алгебре для 7-9 классов по учебнику Ю.Н. Макарычева, Н.Г. Миндюка и др. / [составитель Т.А. Бурмистрова]. - М.: Просвещение,2014.

  • Авторская программа по геометрии для 7-9 классов по учебнику Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. / [составитель Т.А. Бурмистрова], - М.: Просвещение,2014.





Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

  1. В направлении личностного развития:

  • формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

  1. В метапредметном направлении:

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  1. В предметном направлении:

•овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Задачи:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

  • воспитывать культуру личности, отношение к математике как части общечеловеческой культуры, играющей особую роль в общественном развитии.





Структура программы

Программа основного общего образования по математике содержит следующие разделы:

  • пояснительную записку, в которой определяются цели обучения математике в основной школе, раскрываются особенности содержания математического образования на этой ступени, описывается место предметов математического цикла в Базисном учебном (образовательном) плане;

  • содержание курса, включающее перечень основного изучаемого материала, распределенного по содержательным разделам с указанием примерного числа часов на изучение соответствующего материала;

  • тематическое планирование с описанием видов учебной деятельности учащихся 5-9 классов и указанием примерного числа часов на изучение соответствующего материала;

  • описание учебно-методического и материально-технического обеспечения образовательного процесса;

  • планируемые результаты.

  • критерии оценивания



Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

1.1. Общая характеристика

учебного предмета математики

Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. Оно в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» - развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.



1.2. Место учебного предмета в учебном плане.

Базисный учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 875 уроков. Количество часов может быть увеличено за счет школьного компонента образовательного учреждения.

Согласно Базисного учебного (образовательного) плана в 5-6 классах изучается предмет «Математика» (интегрированный предмет), в 7-9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»)

Предмет «Математика» в 5-6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Предмет «Математика» в 7 - 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5-6 классов, алгебраический материал,

элементарные функции, элементы вероятностно-статистической линии, а также геометрический материал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Раздел «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5-6 классов, собственно алгебраический материал, элементарные функции.

В рамках учебного раздела «Геометрия» традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.





Классы

Предметы математического цикла

Количество часов на ступени основного общего образования

Количество часов на ступени основного общего образования с учетом школьного компонента

5-6

Математика

350

(175/175)

437,5(227,5 / 210)

7-9

Алгебра

520 (175/175/170)

312(105/105/102)

416 (140 / 140 /136)

Геометрия

208 (70/70/68)

278 (105/105/68)



На изучение математики в 5 классе отводится 6,5 часов в неделю (227,5 часов), из которых 1,5 час (52,5 часов в год) вводится за счет компонента образовательного учреждения. В результате чего увеличено количество часов на изучение разделов. Эти уроки в календарно-тематическом плане обозначены звездочкой *.

На изучение математики в 6 классе - 6 часов в неделю, 210 часов в год, из которых 1 час вводится за счет компонента образовательного учреждения.

На изучение математики в 7,8 классах - 7 часов в неделю(4 часа на алгебру, 3 часа на геометрию), 245 часов в год, из которых по 1 часу вводится на алгебру и геометрию за счет компонента образовательного учреждения.

На изучение математики в 9 классе - 6 часов в неделю (4 часа на алгебру, 2 часа на геометрию), 204 часа в год, из которых 1 час вводится на алгебру за счет компонента образовательного учреждения.

Дополнительно выделенные часы предполагается использовать на рассмотрение дополнительных вопросов, способствующих развитию математического кругозора, освоение более продвинутого математического аппарата, математических способностей. Эти уроки в календарно-тематическом плане обозначены звездочкой *.



1.3. Личностные, метапредметные и предметные результаты

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

Личностные:

у учащихся будут сформированы:

1) ответственное отношение к учению;

2) готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

3) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

4) начальные навыки адаптации в динамично изменяющемся мире;

5) экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;

6) формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

7) умение контролировать процесс и результат учебной математической деятельности;



у учащихся могут быть сформированы:

1) первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

2) коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;

3) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

4) креативность мышления, инициативы, находчивости, активности при решении арифметических задач.

Метапредметные:

регулятивные

учащиеся научатся:

1) формулировать и удерживать учебную задачу;

2) выбирать действия в соответствии с поставленной задачей и условиями её реализации;

3) планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

4) предвидеть уровень усвоения знаний, его временных характеристик;

5) составлять план и последовательность действий;

6) осуществлять контроль по образцу и вносить необходимые коррективы;

7) адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

8) сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона;



учащиеся получат возможность научиться:

1) определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;

2) предвидеть возможности получения конкретного результата при решении задач;

3) осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;

4) выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;

5) концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;



познавательные

учащиеся научатся:

1) самостоятельно выделять и формулировать познавательную цель;

2) использовать общие приёмы решения задач;

3) применять правила и пользоваться инструкциями и освоенными закономерностями;

4) осуществлять смысловое чтение;

5) создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;

6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

7) понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;

8) понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

9) находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;



учащиеся получат возможность научиться:

1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

2) формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

3) видеть математическую задачу в других дисциплинах, в окружающей жизни;

4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

5) планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

6) выбирать наиболее рациональные и эффективные способы решения задач;

7) интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);

8) оценивать информацию (критическая оценка, оценка достоверности);

9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;



коммуникативные

учащиеся научатся:

1) организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;

2) взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

3) прогнозировать возникновение конфликтов при наличии разных точек зрения;

4) разрешать конфликты на основе учёта интересов и позиций всех участников;

5) координировать и принимать различные позиции во взаимодействии;

6) аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.



Предметные:

учащиеся научатся:

1) овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2)умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;

3) умение проводить классификации, логические обоснования, доказательства математических утверждений;

4) умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;

5)развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;

6) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

7) овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;

8) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

9) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

10) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне - о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

11) умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

учащиеся получат возможность научиться:

1) применять полученные знания для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

2) применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;

3) самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.



1.4. Содержание основного общего образования по учебному предмету

АРИФМЕТИКА (250 ч)

Натуральные числа

Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Проценты; нахождение процентов от величины и величины по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m/n, где т - целое число, п - натуральное число. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.

Действительные числа

Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки

Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя степени 10 в записи числа.

Приближенное значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

АЛГЕБРА (200ч)

Алгебраические выражения

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка

выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разложение квадратного трехчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства

Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ (65 ч)

Основные понятия

Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функции у = I x I

Числовые последовательности

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой л-го члена.

Арифметическая и геометрическая прогрессии. Формулы л-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА (50 ч)

Описательная статистика

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность

Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика

Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ГЕОМЕТРИЯ (255ч)

Наглядная геометрия

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры

Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин

Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты

Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы

Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

ЛОГИКА И МНОЖЕСТВА (10 ч)

Теоретико-множественные понятия

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.

Элементы логики

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок, если то в том и только в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа л. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.

Софизмы, парадоксы.

Резерв времени - 55 ч

Тематическое планирование с определением основных видов учебной деятельности и метапредметных умений и навыков

МАТЕМАТИКА

5-6 классы (350 ч)

1

2

3

Натуральные числа (50ч)

Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Понятие о степени с натуральным показателем.

Квадрат и куб числа.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок.

Решение текстовых задач арифметическими способами.

Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком

Описывать свойства натурального ряда.

Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Выполнять вычисления с натуральными числами; вычислять значения степеней.

Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости.

Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.).

Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)

Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Дроби (120ч)

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Отношение. Пропорция; основное свойство пропорции.

Проценты; нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах.

Решение текстовых задач арифметическими способами

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.

Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями.

Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей.

Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.

Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.

Выполнять прикидку и оценку в ходе вычислений.

Объяснять, что такое процент. Представлять проценты в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике.

Решать задачи на проценты и дроби (в том числе задачи из реальной практики), используя при необходимости калькулятор; использовать понятия отношения и пропорции при решении задач.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера)

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

Рациональные числа (40 ч)

Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.

Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш - проигрыш, выше - ниже уровня моря и т. п.).

Изображать точками координатной прямой положительные и отрицательные рациональные числа.

Характеризовать множество целых чисел, множество рациональных чисел.

Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

Измерения, приближения, оценки. Зависимости между величинами (20ч)

Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам.

Решение текстовых задач арифметическими способами

Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время и т. п.) при решении текстовых задач

Уметь видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни

Элементы алгебры (25 ч)

Использование букв для обозначения чисел, для записи свойств арифметических действий.

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения.

Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости

Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.

Вычислять числовое значение буквенного выражения при заданных значениях букв.

Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек

Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

Описательная статистика. Вероятность. Комбинаторика. Множества (20ч)

Представление данных в виде таблиц, диаграмм.

Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов.

Решение комбинаторных задач перебором вариантов

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др.

Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств. Приводить примеры несложных классификаций из различных областей жизни.

Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера

Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки

Наглядная геометрия (45 ч)

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Многоугольник, правильный многоугольник. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников.

Изображение геометрических фигур на нелинованной бумаге с использованием циркуля, линейки, угольника, транспортира .[Построения на клетчатой бумаге]. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Равновеликие фигуры. [Равносоставленные фигуры]. [Разрезание и составление геометрических фигур. Построение паркетов, орнаментов, узоров].

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры разверток многогранников, цилиндра и конуса. [Создание моделей пространственных фигур (из бумаги, проволки и др.)].

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда и объем куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур. [Графы.]

Распознавать на чертежах, рисунках и моделях геометрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге.

Измерять с помощью инструментов и сравнивать длины отрезков и величины углов. Строить отрезки заданной длины с помощью линейки и циркуля и углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямоугольника.

Выражать одни единицы измерения площади через другие.

Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, определять их вид.

Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.

Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов.

Находить в окружающем мире плоские и пространственные симметричные фигуры.

Решать задачи на нахождение длин отрезков, периметров многоугольников, градусной меры углов, площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Изображать равные фигуры, симметричные фигуры

Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

Резерв времени - 30 ч

Тематическое планирование с определением основных видов учебной деятельности и метапредметных умений и навыков

МАТЕМАТИКА

7-9 классы (694ч)

Раздел «Алгебра» (416 ч)Действительные числа (20ч)

[ Обзор основных фактов, связанных с делимостью натуральных чисел: простые и составные числа, бесконечность множества простых чисел; единственность разложения натурального числа на простые множители; алгоритм Евклида. Доказательство свойств и признаков делимости. Деление с остатком]. Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение т/п, где т - целое число, а п - натуральное число.

Степень с целым показателем. Квадратный корень из числа. Корень третьей степени. [Понятие о корне n-й степени из числа] Запись корней с помощью степени с дробным показателем.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. [ Построение на координатной прямой точек, соответствующих иррациональным числам]

Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел. [ Периодические и непериодические десятичные дроби. Арифметические действия с действительными числами]

Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч

[Решать задачи на делимость.] Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа. Использовать график функции у = х2для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней.

Формулировать определение корня третьей степени; находить значения кубических корней, при необходимости используя, калькулятор.

Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой.

Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа.

Описывать множество действительных чисел.

Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику

Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.

Умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации.

Измерения, приближения, оценки (10 ч)

Приближенное значение величины, точность приближения. [ Абсолютная и относительная погрешности приближения]. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя - степени 10 в записи числа.

Прикидка и оценка результатов вычислений

Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.

Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире.

Сравнивать числа и величины, записанные с использованием степени 10.

Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.

Выполнять вычисления с реальными данными.

Выполнять прикидку и оценку результатов вычислений

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Выполнять вычисления с реальными данными.

Введение в алгебру (10 ч)

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.

Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество

Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении

Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.

Многочлены (50 ч)

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности.[Куб суммы и куб разности. Представление в виде многочлена выражений (a+b)4 и (a+b)5. Треугольник Паскаля] Формула разности квадратов.[Формулы суммы кубов и разности кубов.] Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.[Более сложные случаи разложения многочленов на множители.]

Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители. [Целые корни многочлена с целыми коэффициентами.]

Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений.

Выполнять действия с многочленами.

Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей.[Находить целые корни многочленов с целыми коэффициентами.]

Применять различные формы самоконтроля при выполнении преобразований

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Алгебраические дроби (30 ч)

Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей.

Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей.

Выполнять действия с алгебраическими дробями.

Представлять целое выражение в виде многочлена, дробное - в виде отношения многочленов; доказывать тождества.

Формулировать определение степени с целым показателем.

Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений. [Выполнять преобразования рациональных выражений в соответствии с поставленной целью : выделять квадрат двучлена, целую часть дроби и пр. Применять преобразования рациональных выражений для решения задач]

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

Квадратные корни (15 ч)

Понятия квадратного корня, арифметического квадратного корня. Уравнение вида х2=а. Свойства арифметических квадратных корней: корень из произведения, частного, степени. Тождества вида ()2 = а, где а0, =.

Применение свойств арифметических квадратных корней для преобразования числовых выражений и вычислений. Преобразование сложных выражений.

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений.

Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул.

Исследовать уравнение вида х2 = а; находить точные и приближенные корни при

а > 0

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характер.

Уравнения с одной переменной (40 ч)

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. [Исследование линейнго уравнения]. Решение уравнений, сводящихся к линейным.

Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение.

Примеры решения уравнений третьей и четвертой степени разложением на множители.[Замены переменной]

Решение дробно-рациональных уравнений.

Решение текстовых задач алгебраическим способом

Распознавать линейные и квадратные уравнения, целые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения.

Исследовать квадратные уравнения по дискриминанту и коэффициентам.[Исследовать квадратные уравнения с буквенными коэффициентами]

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Системы уравнений (40ч)

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. [Примеры решения систем линейных уравнений с несколькими переменными] Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.

График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых.[ Условие перпендикулярности прямых]

Графики простейших нелинейных уравнений (парабола, гипербола, окружность).

Графическая интерпретация системы уравнений с двумя переменными

Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.

Решать системы двух уравнений с двумя переменными, указанные в содержании.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.

Строить графики уравнений с двумя переменными.

Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений

Использовать функционально-графические представления для решения и исследования уравнений и систем.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Использовать математические средства наглядности графики для интерпретации, аргументации.

Неравенства (30 ч)

Числовые неравенства и их свойства.[Доказательство неравенств]

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства.[Примеры решения дробно рациональных неравенств]

Системы линейных неравенств с одной переменной. [Неравенства с двумя переменными. Графическая интерпретация неравенств и систем неравенств с двумя переменными]

Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач.

Распознавать линейные и квадратные неравенства.

Решать линейные неравенства, системы линейных неравенств.

Решать квадратные неравенства на основе графических представлений. [Изображать на координатной плоскости множества точек, задаваемые неравенствами с двумя переменными и их системами. Описывать алгебраически области координатной плоскости]

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Использовать математические средства наглядности графики для интерпретации, аргументации.

Зависимости между величинами (20ч)

Зависимость между величинами.

Представление зависимостей между величинами в виде формул. Вычисления по формулам.

Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.

Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей.

Решение задач на прямую пропорциональность и обратную пропорциональную зависимости

Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.

Распознавать прямую и обратную пропорциональные зависимости.

Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

Числовые функции (55 ч)

Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.

Примеры графиков зависимостей, отражающих реальные процессы.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.

Линейная функция, ее график и свойства.

Квадратичная функция, ее график и свойства.

Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций. [Дробно - линейная функция и её график.] [Параллельный перенос графиков вдоль осей координат, симметрия относительно осей координат.]

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.

Моделировать реальные зависимости формулами 5 графиками. Читать графики реальных зависимостей.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков изучаемых функций в зависимости от значений коэффициентов, входящих в формулы.

Строить графики изучаемых функций; описывать их

Свойства. [Строить более сложные графики на основе графиков изученных функций.]

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Числовые последовательности. Арифметическая и геометрическая прогрессии (20 ч)

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты

Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой п-го члена или рекуррентной формулой.

Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов.

Изображать члены последовательности точками на координатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания.

Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых л членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Описательная статистика (15 ч)

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические

характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов.

Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон)

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Случайные события и вероятность (20 ч)

Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий.

Приводить примеры равновероятных событий. Несовместные события. Формула сложения вероятностей. Умножение вероятностей.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.



Элементы комбинаторики (15 ч)

Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал

-

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.

Решать задачи на вычисление вероятности с применением комбинаторики

Понимать и использовать математические средства наглядности схемы для иллюстрации, интерпретации

Множества. Элементы логики (10 ч)

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.

Понятия о равносильности, следовании, употребление логических связок если то, в том и только том случае. Логические связки и, или

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.

Конструировать математические предложения с помощью связок если то, в том и только том случае, логических связок и, или

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.

Резерв -16 ч



Раздел « Геометрия» (210 ч)

Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи.

Уметь находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, понимать и использовать математические средства наглядности (чертежи) для иллюстрации, интерпретации.

Треугольники (75ч)

Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот и их продолжений

Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках.

Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников.

Объяснять и иллюстрировать неравенство треугольника.

Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.

Формулировать определение подобных треугольников.

Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора.

Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°.

Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов.

Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла.

Формулировать и доказывать теоремы синусов и косинусов.

Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Четырёхугольники (30ч)

Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.

Прямоугольник, теорема о равенстве диагоналей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равнобедренная трапеция

Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.

Исследовать свойства четырехугольников с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Многоугольники (10ч)

Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

Распознавать многоугольники, формулировать определение и приводить примеры многоугольников.

Формулировать и доказывать теорему о сумме углов выпуклого многоугольника.

Исследовать свойства многоугольников с помощью компьютерных программ.

Решать задачи на доказательство и вычисления.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Окружность и круг (30ч)

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.

Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Вписанные и описанные окружности правильного многоугольника.

Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника. [Вневписанные окружности треугольника.] [Вписанные и описанные четырехугольники.]

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью.

Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью.

Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Изображать и формулировать определения вписанных и описанных многоугольников и треугольников;

окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника.

Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Геометрические преобразования (10ч)

Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.

Исследовать свойства движений с помощью компьютерных программ.

Выполнять проекты по темам геометрических преобразований на плоскости

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Построения с помощью циркуля и линейки (10ч)

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей

Решать задачи на построение с помощью циркуля и линейки.

Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры.

Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

Измерение геометрических величин (25ч)

Длина отрезка. Длина ломаной. Периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Длина окружности, число ; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности. [Радианная мера угла.]

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника.

Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.

Формулировать и объяснять свойства длины, градусной меры угла, площади.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и иллюстрировать отношение площадей подобных фигур.

Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы.

Использовать формулы для обоснования доказательных рассуждений в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов

Координаты (15ч)

Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности

Объяснять и иллюстрировать понятие декартовой системы координат.

Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.

Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов

Векторы (15ч)

Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение вектор

Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.

Вычислять длину и координаты вектора.

Находить угол между векторами.

Выполнять операции над векторами.

Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства

Умение понимать и использовать математические средства наглядности.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

Элементы логики (5ч)

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример

Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы

Умение понимать и использовать математические средства наглядности.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

Резерв времени - 33ч



Резервное время по курсу может быть использовано на реализацию междисциплинарных учебных программ - «Формирование ИКТ-компетентности обучающихся», «Основы учебно-исследовательской и проектной деятельности", для организации обобщающего и систематизирующего повторения отдельных тем.

1.5. Контроль предметных результатов и нормы оценки

Главное достоинство основной образовательной программы ФГОС в том, что она реально переключает контроль и оценивание (а значит, и всю деятельность образовательных учреждений) со старого образовательного результата на новый. Вместо воспроизведения знаний теперь оцениваются разные направления деятельности учеников, то есть то, что им нужно в жизни в ходе решения различных практических задач.

Новые формы и методы оценки.

Прежде всего, изменяется инструментарий - формы и методы оценки.

Приоритетными в диагностике (контрольные работы и т.п.) становятся не репродуктивные задания (на воспроизведение информации), а продуктивные задания (задачи) по применению знаний и умений, предполагающие создание учеником в ходе решения своего информационного продукта: вывода, оценки и т.п.

Помимо привычных предметных контрольных работ теперь будут проводиться метапредметные диагностические работы, составленные из компетентностных заданий, требующих от ученика не только познавательных, но и регулятивных и коммуникативных действий. Диагностика метапредметных результатов является педагогической. По ФГОС вводится диагностика результатов личностного развития. Она может проводиться в разных формах (диагностическая работа, результаты наблюдения и т.д.). Такая диагностика предполагает проявление учеником качеств своей личности: оценки поступков, обозначение своей жизненной позиции, культурного выбора, мотивов, личностных целей. Это сугубо личная сфера, поэтому правила личностной безопасности, конфиденциальности требуют проводить такую диагностику только в виде неперсонифицированных работ. Иными словами, работы, выполняемые учениками, как правило, не должны подписываться, и таблицы, где собираются эти данные, должны показывать результаты только по классу или школе в целом, но не по каждому конкретному ученику.

Привычная форма письменной контрольной работы теперь дополняется такими новыми формами контроля результатов, как:

  • целенаправленное наблюдение (фиксация проявляемых ученикам действий и качеств по заданным параметрам),

  • самооценка ученика по принятым формам (например, лист с вопросами по саморефлексии конкретной деятельности),

  • результаты учебных проектов,

  • результаты разнообразных внеучебных и внешкольных работ, достижений учеников.

В системе оценки достижения планируемых результатов освоения основной образовательной программы общего образования остаётся «пятибалльная» система. Если ранее эта шкала оценивания была построена по принципу «вычитания» (решение учеником учебной задачи сравнивается с неким образцом «идеального решения», ищутся ошибки , несовпадение с образцом, чтобы понизить отметку («не ставить же всем пятерки!»); подобный подход ориентировал на поиск неудачи, отрицательно сказывался на мотивации ученика, его личностной самооценке). То теперь вместо этого предлагается переосмысление шкалы по принципу «прибавления» и «уровнего подхода» - решение учеником даже простой учебной задачи, части задачи оцениваются как безусловных успех, но на элементарном уровне, за которым следует более высокий уровень, к которому ученик может стремиться.

Границы применения системы оценки.

1) Постепенное внедрение всех нововведений по этапам, от простого к сложному. Для этого разделяются все положения нашей системы на «минимум первого этапа», «минимум второго этапа» (обязательная часть) и «максимум» (часть, внедряемая по желанию и возможностям учителя).

2) Понимание, что система оценки результатов не даётся в законченном и неизменном виде, она будет развиваться, по ходу её внедрения будут ставиться новые вопросы, проблемы, которые потребуют поиска ответов и решений.

3) обучение самих учеников способам оценивания и фиксации своих результатов, чтобы они могли в основном делать это самостоятельно, лишь при выборочном контроле учителя; ведение электронного журнала.

4) Ориентир только на поддержание успешности и мотивации ученика. Запрет на любые формы и способы, которые превращали бы систему оценки в «кнут». Например, нельзя допускать резкого увеличения числа контрольных работ, запугивания учеников возможными плохими отметками («Вы не справитесь с контрольными государственного стандарта!») и т. п.

5) Обеспечение личной психологической безопасности ученика. Подавляющее большинство образовательных результатов конкретного ученика можно сравнивать только с его же предыдущими показателями, но не с показателями других учеников класса. У каждого должно быть право на индивидуальную образовательную траекторию - на свой темп освоения материала, на выбранный уровень притязаний. Например, если ученик на контрольных работах выбирает только необходимый, а не повышенный уровень заданий, он имеет на это право, его нельзя за это ругать, но можно предлагать: «Молодец, с этим справляешься, попробуй более сложные задания».





Контроль уровня обученности.

Контроль за результатами обучения осуществляется через использование следующих видов контроля: входной, текущий, тематический, итоговый. При этом используются различные формы контроля: контрольная работа, домашняя контрольная работа, самостоятельная работа, домашняя практическая работа, домашняя самостоятельная работа, тест, контрольный тест, устный опрос, блиц-опрос, фронтальный опрос.



Критерии и нормы оценки знаний обучающихся

1. Оценка письменных контрольных работ обучающихся

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна - две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.



Требования к речи обучающихся

Обучающиеся должны уметь:

  • излагать материал логично и последовательно;

  • отвечать громко, четко, с соблюдением логических ударений, пауз и правильной интонации.

Для речевой культуры обучающихся важны и такие умения, как умение слушать и понимать речь учителя и товарищей, внимательно относиться к высказываниям других, умение поставить вопрос, принять участие в обсуждении проблемы.

Текущий контроль осуществляется в форме контрольных, самостоятельных работ; промежуточный контроль - в виде административной контрольной работы.



Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  • незнание наименований единиц измерения;

  • неумение выделить в ответе главное;

  • неумение применять знания, алгоритмы для решения задач;

  • неумение делать выводы и обобщения;

  • неумение читать и строить графики;

  • неумение пользоваться первоисточниками, учебником и справочниками;

  • потеря корня или сохранение постороннего корня;

  • отбрасывание без объяснений одного из них;

  • равнозначные им ошибки;

  • вычислительные ошибки, если они не являются опиской;

  • логические ошибки.



К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  • неточность графика;

  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  • нерациональные методы работы со справочной и другой литературой;

  • неумение решать задачи, выполнять задания в общем виде.



Недочетами являются:

  • нерациональные приемы вычислений и преобразований;

  • небрежное выполнение записей, чертежей, схем, графиков.





Оценка письменных работ по математике

Работа, состоящая из примеров:

  • «5» - без ошибок.

  • «4» -1 грубая и 1-2 негрубые ошибки.

  • «3» - 2-3 грубые и 1-2 негрубые ошибки или 3 и более негрубых ошибки.

  • «2» - 4 и более грубых ошибки.

Работа, состоящая из задач:

  • «5» - без ошибок.

  • «4» - 1-2 негрубых ошибки.

  • «3» - 1 грубая и 3-4 негрубые ошибки.

  • «2» - 2 и более грубых ошибки.

Комбинированная работа:

  • «5» - без ошибок

  • «4» - 1 грубая и 1-2 негрубые ошибки, при этом грубых ошибок не должно быть в задаче.

  • «3» - 2-3 грубые и 3-4 негрубые ошибки, при этом ход решения задачи должен быть верным.

  • «2» - 4 грубые ошибки..

Контрольный устный счет:

  • «5» - без ошибок.

  • «4» -1-2 ошибки.

  • «3» - 3-4 ошибки.

Грубые ошибки:

  • Вычислительные ошибки в примерах и задачах.

  • Ошибки на незнание порядка выполнения арифметических действий.

  • Неправильное решение задачи (пропуск действия, неправильный выбор действий, лишние действия).

  • Не решенная до конца задача или пример

  • Невыполненное задание.

Негрубые ошибки:

  • Нерациональный прием вычислений.

  • Неправильная постановка вопроса к действию при решении задачи.

  • Неверно сформулированный ответ задачи.

  • Неправильное списывание данных (чисел, знаков).

  • Недоведение до конца преобразований.

Контрольная работа

  • задания должны быть одного уровня для всего класса;

  • задания повышенной трудности выносятся в «дополнительное задание», которое предлагается для выполнения всем ученикам и оценивается только оценками «4» и «5»; обязательно разобрать их решение при выполнении работы над ошибками;

  • оценка не снижается, если есть грамматические ошибки и неаккуратные исправления.

Система оценивания планируемых результатов по математике



Отметка "5" - устный ответ, письменная работа, практическая деятельность в полном объеме соответствует учебной программе, допускается один недочет, объем ЗУНов составляет 90-100% содержания (правильный полный ответ, представляющий собой связное, логически последовательное сообщение на определенную тему, умение применять определения, правила в конкретных случаях. Обучающийся обосновывает свои суждения, применяет знания на практике, приводит собственные примеры).

Отметка "4" - устный ответ, письменная работа, практическая деятельность или её результаты в общем соответствуют требованиям учебной программы и объем ЗУНов составляет 70-90% содержания (правильный, но не совсем точный ответ).

Отметка "3" - устный ответ, письменная работа, практическая деятельность и её результаты в основном соответствуют требованиям программы, однако имеется определённый набор грубых и негрубых ошибок и недочётов. Обучающийся владеет ЗУНами в объеме 50-70% содержания (правильный, но не полный ответ, допускаются неточности в определении понятий или формулировке правил, недостаточно глубоко и доказательно ученик обосновывает свои суждения, не умеет приводить примеры, излагает материал непоследовательно).

Отметку "2" - устный ответ, письменная работа, практическая деятельность и её результаты частично соответствуют требованиям программы, имеются существенные недостатки и грубые ошибки, объем ЗУНов обучающегося составляет менее 50% содержания (неправильный ответ).



Не решена типовая, много раз отработанная задача

«2»

ниже нормы,

неудовлетворительно

Выполнено менее 50% заданий базового уровня

Базовый уровень





Решение типовой задачи, подобной тем, что решали уже много раз, где требовались отработанные умения и уже усвоенные знания



«3»

норма, зачёт, удовлетворительно.

Частично успешное решение (с незначительной, не влияющей на результат ошибкой или с посторонней помощью в какой-то момент решения)

Выполнено 50 - 65% заданий базового уровня

«4»

хорошо.

Полностью успешное решение (без ошибок и полностью самостоятельно)

Выполнено более 65% заданий базового уровня и 50 % заданий повышенного уровня или 100% заданий базового уровня



Повышенный уровень

Решение нестандартной задачи, где потребовалось

либо применить новые знаний по изучаемой в данный момент теме,

либо уже усвоенные знания и умения, но в новой, непривычной ситуации

«5» отлично.

Полностью успешное решение (без ошибок и полностью самостоятельно)

Выполнено 90 - 100% заданий базового уровня и не менее 50 % заданий повышенного уровня













Особенности оценивания тестовых работВид теста

Критерии успешности

5-балльная система

Базовый уровень



Тест (с выбором ответа)

65% и более правильных ответов

65% - 79% - «3»

80% - 100% - «4»

Тест (со свободным ответом)

50% и более правильных ответов

50% - 69% - «3»

70% - 100% - «4»

Смешанный тест

55% и более правильных ответов

55% - 75% - «3»

76% - 100% - «4»

Повышенный уровень



Правильно выполены задания базового уровня и 50 - 65 % заданий повышенного уровня

«5»



Особенности оценки предметных результатов

Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.

Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса - учебных предметов.

Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.

Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней.

Базовый уровень достижений - уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:

• повышенный уровень достижения планируемых результатов, оценка «хорошо» (отметка «4»);

• высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.

Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.

Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:

• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);

• низкий уровень достижений, оценка «плохо» (отметка «1»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Как правило, пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.

Описанный выше подход целесообразно применять в ходе различных процедур оценивания: текущего, промежуточного и итогового.

Для формирования норм оценки в соответствии с выделенными уровнями необходимо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошибках, которые сделал обучающийся, а на учебных достижениях, которые обеспечивают продвижение вперёд в освоении содержания образования.

Для оценки динамики формирования предметных результатов в системе внутришкольного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освоению систематических знаний, в том числе:

• первичному ознакомлению, отработке и осознанию теоретических моделей и понятий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;

• выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и явлений действительности (природных, социальных, культурных, технических и др.) в соответствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;

• выявлению и анализу существенных и устойчивых связей и отношений между объектами и процессами.

При этом обязательными составляющими системы накопленной оценки являются материалы:

• стартовой диагностики;

• тематических и итоговых проверочных работ по всем учебным предметам;

• творческих работ, включая учебные исследования и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.



Уровни подготовки учащихся и критерии успешности обучения по

математикеУровни

Оценка

Теория

Практика

1

Узнавание

Алгоритмическая деятельность с подсказкой

«3»

Распознавать объект, находить нужную формулу, признак, свойство и т.д.

Умение выполнять задания по образцу, на непосредственное применение формул, правил, инструкций и т.д.

2

Воспроизведение

Алгоритмическая деятельность без подсказки

«4»

Определять формулировки всех понятий, их свойства, признаки, формулы.

Умение воспроизвести доказательства, выводы, устанавливать взаимосвязь, выбирать нужное для выполнения данного задания

Умение работать с учебной и справочной литературой, выполнять задания, требующие несложных преобразований с применением изучаемого материала

3

Понимание

Деятельность при отсутствии явно выраженного алгоритма

«5»

Делать логические заключения, составлять алгоритм, модель несложных ситуаций

Умение применять полученные знания в различных ситуациях. Выполнять задания комбинированного характера, содержащих несколько понятий.

4

Овладение умственной самостоятельностью

Творческая исследовательская деятельность

«5»

В совершенстве владеть изученным материалом, свободно ориентироваться в нем. Иметь знания из дополнительных источников. Владеть операциями логического мышления. Составлять модель любой ситуации.

Умение применять знания в любой нестандартной ситуации. Самостоятельно выполнять творческие исследовательские задания. Выполнять функции консультанта.





3. ОПИСАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА



Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, таблицами по математике, а также информационно-коммуникативными средствами, экранно-звуковыми пособиями, техническими средствами обучения.

Демонстрационный материал (слайды).

Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.

При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.

Задания для устного счета.

Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель - ученик, взаимопроверки, а также в виде тренировочных занятий.

Тренировочные упражнения.

Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.

Электронные учебники.

Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала. На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность учащихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.

Использование компьютерных технологий в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес к изучению данного предмета.

Минимальный набор учебного оборудования включает:

1. Библиотечный фонд

1. Научная, научно-популярная, историческая литература

2. Справочные пособия (энциклопедии, словари, справочники по математике и т.п.)

В учебниках акцентируется внимание на осознанное изучение чисел и вычислений, но в то же время уделяется достаточно внимания алгебраическому и геометрическому материалу. Принципиальной особенностью учебников является то, что они ориентированы на формирование вычислительных навыков и развивают мышление учащихся. Сильной стороной учебников является система упражнений, построенная в соответствии с принципом от простого к сложному. Текстовые задачи решаются в основном арифметическими способами, что отвечает возрастным возможностям учащихся и способствует развитию мышления и речи и в конечном счете повышению эффективности обучения.

Дидактические материалы содержат самостоятельные и контрольные работы разного уровня сложности в нескольких вариантах. Их можно использовать не только для проверки знаний и умений учащихся, но и как задания для индивидуальной работы с наиболее заинтересованными учащимися.

Тематические тесты содержат тестовые задания по всем разделам учебников. Цель пособия - помочь учителю в организации текущего контроля с использованием тестирования.

Учебное пособие «Задачи на смекалку» является дополнением к учебнику математики. В него включены разнообразные задачи на составление выражений, нахождение чисел, разрезание фигур на равные части, головоломки, числовые ребусы, задачи-шутки и т. п. Здесь есть несложные задачи и задачи, при решении которых нужно проявить сообразительность. К одним заданиям в конце книги приведены ответы, к другим - только советы, которые помогут найти решение.

В книге для учителя приведены методические рекомендации по организации учебного процесса и проведению самостоятельных и контрольных работ, примерное тематическое планирование, решения наиболее трудных задач, указаны пути преодоления типичных затруднений учащихся, возникающих при изучении отдельных тем.





2. Печатные пособия

2.1. Таблицы по математике

2.2. Портреты выдающихся деятелей математики

Демонстрационный материал:

- сравнение чисел;

-уравнение;

- доли, дроби;

- периметр;

- состав числа;

- единицы времени;

-меры массы;

- формулы;

- площадь фигуры;

- меры площади.

Объекты, предназначенные для демонстрации счета, изучения демонстрации счета, изучения геометрических фигур:

- отрезок, луч, прямая;

- угол;

-треугольник;

- многоугольник;

- круг, окружность;

- прямоугольный параллелепипед, другие пространственные фигуры..





3. Информационные средства

3.1. Мультимедийные обучающие программы по основным разделам курса математики

3.2. Электронная база данных для создания тематическких и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуапьной работы

Образовательные электронные ресурсы:

  1. Математика. Первое сентября [Электронный ресурс]//mat.1september.ru

2) Математика в школе [Электронный ресурс] //www.школьнаяпресса.рф

3) www.school.edu.ru / -Российский образовательный портал

4) www.1september.ru / - газета «Первое сентября»

5) all.edu.ru / - Все образование Интернета

6) school-collection.edu.ru / - единая коллекция цифровых образовательных ресурсов

3.3. Инструментальная среда по математике

4. Технические средства обучения

4.1. Компьютер

5. Учебно-практическое и учебно-лабораторное оборудование

5.1. Доска магнитная

5.2. Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30°, 60°), угольник (45°, 45°), циркуль

5.3. Комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных)





6.Цифровые образовательные ресурсы

  • Математика: еженедельное учебно-методическое приложение к газете «Первое сентября»: mat.1september.ru

Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих интернет-ресурсов:

  • Министерство образования и науки РФ и РТ.

  • Федеральное государственное учреждение «Государственный научно-исследовательский институт информационных технологий и телекоммуникаций». - Режим доступа : www.informika.ru

  • Тестирование on-line: 5-11 классы. - Режим доступа : www.kokch.kts.ru/cdo

  • Путеводитель «В мире науки» для школьников. - Режим доступа : www.uic.ssu. samara.ru/~nauka

  • Мегаэнциклопедия Кирилла и Мефодия. - Режим доступа: mega.km.ru

  • Сайт энциклопедий. - Режим доступа : www.encyclopedia.ru</</font>



4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА



5 класс

Натуральные числа и шкалы

Обучающиеся научатся:

Читать и записывать натуральные числа, в том числе и многозначные.

Составлять числа из различных единиц.

Строить, обозначать и называть геометрические фигуры: отрезки, плоскости, прямые, находить координаты точек и строить точки по координатам.

Выражать длину (массу) в различных единицах.

Показывать предметы, дающие представление о плоскости.

Определять цену деления, проводить измерения с помощью приборов, строить шкалы с помощью выбранных единичных отрезков.

Чертить координатный луч, находить координаты точек и строить точки по координатам.

Сравнивать натуральные числа, в том числе и с помощью координатного луча.

Читать и записывать неравенства, двойные неравенства.

Обучающиеся получат возможность:

Познакомиться с позиционными системами счисления с основаниями, отличными от 10.

Сложение и вычитание натуральных чисел

Обучающиеся научатся:

Складывать и вычитать многозначные числа столбиком и при помощи координатного луча.

Находить неизвестные компоненты сложения и вычитания.

Использовать свойства сложения и вычитания для упрощения вычислений.

Решать текстовые задачи, используя действия сложения и вычитания.

Раскладывать число по разрядам и наоборот.

Обучающиеся получат возможность:

Использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Умножение и деление натуральных чисел

Обучающиеся научатся:

Заменять действие умножения сложением и наоборот.

Находить неизвестные компоненты умножения и деления.

Умножать и делить многозначные числа столбиком.

Выполнять деление с остатком.

Упрощать выражения с помощью вынесения общего множителя за скобки, приведения подобных членов выражения, используя свойства умножения.

Решать уравнения, которые сначала надо упростить.

Решать текстовые задачи арифметическим способом на отношения «больше (меньше) на … (в…); на известные зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.).

Решать текстовые задачи с помощью составления уравнения (в том числе задачи на части).

Изменять порядок действий для упрощения вычислений, осуществляя равносильные преобразования.

Составлять программу и схему программы вычислений на основании ее команд, находить значение выражений, используя программу вычислений.

Вычислять квадраты и кубы чисел.

Решать уравнения на основе зависимости между компонентами действий (умножение и деление).

Обучающиеся получат возможность:

Использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Площади и объёмы

Обучающиеся научатся:

Читать и записывать формулы.

Вычислять по формулам путь (скорость, время), периметр, площадь прямоугольника, квадрата, треугольника, объем прямоугольного параллелепипеда, куба.

Вычислять площадь фигуры по количеству квадратных сантиметров, уложенных в ней.

Вычислять объем фигуры по количеству кубических сантиметров, уложенных в ней.

Решать задачи, используя свойства равных фигур.

Переходить от одних единиц площадей (объемов) к другим.

Обучающиеся получат возможность:

Научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

Углубить и развить представления о пространственных геометрических фигурах;

Научиться применять понятие развёртки для выполнения практических расчётов.

Обыкновенные дроби

Обучающиеся научатся:

Изображать окружность и круг с помощью циркуля, обозначать и называть их элементы.

Читать и записывать обыкновенные дроби.

Называть числитель и знаменатель дроби и объяснять, что ни показывают.

Изображать дроби, в том числе равные на координатном луче.

Распознавать и решать три основные задачи на дроби.

Сравнивать дроби с одинаковыми знаменателями.

Сравнивать правильные и неправильные дроби с единицей и друг с другом.

Складывать и вычитать дроби с одинаковым знаменателем.

Записывать результат деления двух любых натуральных чисел с помощью обыкновенных дробей.

Записывать любое натуральное число в виде обыкновенной дроби.

Выделять целую часть из неправильной дроби.

Представлять смешанное число в виде неправильной дроби.

Складывать и вычитать смешанные числа.

Десятичные дроби. Сложение и вычитание десятичных дробей

Обучающиеся научатся:

Иметь представление о десятичных разрядах.

Читать, записывать, сравнивать, округлять десятичные дроби.

Выражать данные значения длины, массы, площади, объема в виде десятичных дробей.

Изображать десятичные дроби на координатном луче.

Складывать и вычитать десятичные дроби.

Раскладывать десятичные дроби по разрядам.

Решать текстовые задачи на сложение и вычитание, данные в которых выражены десятичными дробями.

Округлять десятичные дроби до заданного десятичного разряда.

Умножение и деление десятичных дробей

Обучающиеся научатся:

Умножать и делить десятичную дробь на натуральное число, на десятичную дробь.

Выполнять задания на все действия с натуральными числами и десятичными дробями.

Применять свойства умножения и деления десятичных дробей при упрощении числовых и буквенных выражений и нахождении их значений.

Вычислять квадрат и куб заданной десятичной дроби.

Решать текстовые задачи на умножение и деление, а также на все действия, данные в которых выражены десятичными дробями.

Находить среднее арифметическое нескольких чисел.

Находить среднюю скорость движения, среднюю урожайность, среднюю производительность и т.д.

Инструменты для вычисления и измерения

Обучающиеся научатся:

Пользоваться калькуляторами при выполнении отдельных арифметических действий с натуральными числами и десятичными дробями.

Обращать десятичную дробь в проценты и наоборот.

Вычислять проценты с помощью калькулятора.

Распознавать и решать разные виды задач на проценты: находить проценты от числа, число по его процентам.

Обучающиеся получат возможность научиться:

Читать и использовать информацию, представленную в виде таблицы, круговой диаграммы;

Алгоритму построения круговых диаграмм.

Введение в вероятность

Обучающиеся научатся:

Определять вид событий,

Строить дерево возможных вариантов,

Решать простейшие комбинаторные задачи.

Обучающиеся получат возможность:

Научиться решать комбинаторные задачи перебором вариантов, с помощью составления «дерева» вариантов и с помощью понятия факториал.

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для подсчёта комбинаций случайных событий.



6 класс



Натуральные числа. Дроби. Рациональные числа.

Обучающиеся научатся:

Оперировать понятиями, связанными с делимостью натуральных чисел.

Выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации.

Сравнивать и упорядочивать рациональные числа.

Обучающиеся получат возможность:

Углубить и развить представления о рациональных числах.

Научиться использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.



Измерения, приближения, оценки

Обучающиеся научатся:

Понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения.

Использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.

Обучающиеся получат возможность:

Понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.



Элементы алгебры

Обучающиеся научатся:

Читать и записывать буквенные выражения, составлять буквенные выражения по условию задач.

Вычислять числовое значение буквенного выражения при заданных значениях букв. Составлять уравнения по условиям задач.

Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек.



Описательная статистика. Вероятность. Комбинаторика

Обучающиеся научатся:

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, отвечающие заданным условиям.

Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий, строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

Обучающиеся получат возможность:

Научиться некоторым специальным приемам решения комбинаторных задач.



Наглядная геометрия

Обучающиеся научатся:

Изготавливать пространственные фигуры из разверток, распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса.

Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение.

Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Находить в окружающем мире плоские и пространственные симметричные фигуры. Решать задачи на нахождение длин отрезков, периметров многоугольников, градусной меры углов, площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов. Выделять в условии задачи данные, необходимые для ее решения,

строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи. Изображать равные фигуры.

Обучающиеся получат возможность:

Научиться вычислять объемы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов.

Углубить и развить представления о пространственных геометрических фигурах. Научиться применять понятие развертки.





7 класс



Выражения. Тождества. Уравнения.

Обучающиеся научатся:

Находить значения числовых и буквенных выражений;

Логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки.

Ясно, точно и грамотно излагать свои мысли в устной и письменной речи.

Использовать разные языки математики (словесный, символический графический) и свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства.

Выполнять задания по алгоритму, по выбранному способу действий;

обучающиеся получат возможность:

Углубить и развить представления о действительных числах, о их свойствах;

Применять различные способы при выполнении действий с действительными числами;

Решать занимательные задачи.

Изучить исторические сведения по теме.

Анализировать и осмысливать текст задачи, моделировать условие с помощью реальных предметов - схем, рисунков; критически оценивать полученный ответ, осуществлять самоконтроль;

Научиться применять полученные знания в новой ситуации; решать занимательные задачи и задачи из смежных предметов.



Алгебраические выражения

Обучающиеся научатся:

Находить значения числовых выражений; применять алгоритм выполнения действий в числовых выражениях;

Составлять буквенные выражения и формулы по условиям задач и находить их значения; осуществлять в числовых выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

Осуществлять подстановку одного выражения в другое, выражать из формул одну переменную через другую;

Владеть понятиями, связанными с одночленами, многочленами.

Выполнять действия с одночленами; приводить подобные одночлены по алгоритму;

Применять свойства одночленов, многочленов при выполнении заданий;

Читать и записывать алгебраические дроби;

Приводить дроби к общему знаменателю, сравнивать и упорядочивать их,

Называть числитель и знаменатель дроби;

Выполнять действия с алгебраическими дробями;

Находить значение числового выражения;

Различать тождественно равные рациональные выражения.



обучающиеся получат возможность:

Углубить и развить представления об одночленах и их свойствах: приемы составления математической модели ситуации в виде одночлена; в виде суммы или разности одночленов;

Научиться решать комбинированные задачи с использованием более чем 3 алгоритмов ,приводить для иллюстрации изученных положений самостоятельно подобранные примеры;

Научиться: использовать приёмы упрощения алгебраические выражений с одночленами;

Способам определения корректности ( некорректности) заданий ;создавать алгоритмы деятельности;

Приёмам рационального выполнения заданий, приемам решения задач повышенного уровня;

Анализировать и осмысливать текст задачи, моделировать условие с помощью реальных предметов - схем, рисунков; критически оценивать полученный ответ, осуществлять самоконтроль;

Научиться применять полученные знания в новой ситуации; решать занимательные задачи и задачи из смежных предметов.



Линейные уравнения

Обучающиеся научатся:

Распознавать уравнения первой степени с одним неизвестным и с двумя неизвестными;

Отличать линейные уравнения от нелинейных;

Понимать особенность линейных уравнений;

Решать линейные уравнения и системы, находить их корни;

Владеть понятиями «решение уравнения», «что значит решить уравнение», «корень уравнения»;

Понимать, что такое система;

Различным способам решения систем уравнений;

Решать задачи с помощью линейных уравнений и систем.

Обучающиеся получат возможность:

Углубить и развить представления об уравнениях и способах их решения;

Применять различные способы при решении уравнений и их систем;

Решать занимательные задачи с помощью уравнений и их систем.

Изучить исторические сведения по теме.



Числовые функции

Обучающиеся научатся:

Понимать и использовать функциональные понятия и язык (термины, символические обозначения);

Строить графики квадратных функций, исследовать их свойства на основе изучения поведения этих графиков;

Понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Обучающиеся получат возможность научиться:

Проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;

Использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.





Начальные геометрические сведения.

Обучающиеся научатся:

Пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

Распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

Находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур;

Решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки.

Обучающиеся получат возможность научиться:

Решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

Решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

Исследовать свойств планиметрических фигур с помощью компьютерных программ;

Выполнять проекты по темам (по выбору).



Треугольники.

Обучающиеся научатся:

Строить с помощью чертежного угольника и транспортира медианы, высоты, Биссектрисы прямоугольного треугольника;

Проводить исследования несложных ситуаций (сравнение элементов равнобедренного треугольника), формулировать гипотезы исследования, понимать необходимость ее проверки, доказательства, совместно работать в группе;

Переводу текста (формулировки) первого, второго, третьего признаков равенства треугольников в графический образ, короткой записи, доказательства, применения для решения задач на выявление равных треугольников;

Выполнять алгоритмические предписания и инструкции (на примере построения биссектрисы, перпендикуляра, середины отрезка), овладевать азами графической культуры.

Обучающиеся получат возможность научиться:

Переводить текстовую информацию в графический образ и математическую модель, решать комбинированные задачи с использованием алгоритмов, записывать решения с помощью принятых условных обозначений;

Составлять конспект математического текста, выделять главное, формулировать определения по описанию математических объектов;

Проводить исследования ситуаций (сравнение элементов равнобедренного треугольника), формулировать гипотезы исследования, понимать необходимость ее проверки, доказательства, совместно работать в группе.

Проводить подбор информации к проектам, организовывать проектную деятельность и провести её защиту.



Параллельные прямые.

Обучающиеся научатся:

Передавать содержание материала в сжатом виде (конспект), структурировать материал, понимать специфику математического языка и работы с математической символикой;

Работать с готовыми предметными, знаковыми и графическими моделями для описания свойств и качеств изучаемых объектов;

Проводить классификацию объектов (параллельные, непараллельные прямые) по заданным признакам;

Использовать соответствующие инструменты для решения практических задач, точно выполнять инструкции;

Распределять свою работу, оценивать уровень владения материалом.

Обучающиеся получат возможность научиться:

Работать с готовыми графическими моделями для описания свойств и качеств изучаемых объектов, проводить классификацию объектов (углов, полученных при пересечении двух прямых) по заданным признакам;

Переводить текстовую информацию в графический образ и математическую модель, представлять информацию в сжатом виде - схематичная запись формулировки теоремы, проводить доказательные рассуждения, понимать специфику математического языка;

Объяснять изученные положения на самостоятельно подобранных примерах, проводить классификацию (на примере видов углов при двух параллельных и секущей) по выделенным признакам, доказательные рассуждения.

Соотношения между сторонами и углами треугольник.

Обучающиеся научатся:

Проводить исследования несложных ситуаций (измерение углов треугольника и вычисление их суммы), формулировать гипотезу исследования, понимать необходимость ее проверки, совместно работать в группе;

Составлять конспект математического текста, выделять главное, формулировать определения по описанию математических объектов;

Осуществлять перевод понятий из печатного (текст) в графический образ (чертеж);

приводить примеры, подбирать аргументы, вступать в речевое общение, участвовать в коллективной деятельности, оценивать работы других;

Различать факт, гипотезу, проводить доказательные рассуждения в ходе решения исследовательских задач на выявление соотношений углов прямоугольного треугольника;

Проводить исследования несложных ситуаций (сравнение прямоугольных треугольников), представлять результаты своего мини- исследования, выбирать соответствующий признак для сравнения, работать в группе;

Обучающиеся получат возможность научиться:

Переводить текстовую информацию в графический образ и математическую модель, решать комбинированные задачи с использованием 2-3 алгоритмов, проводить доказательные рассуждения в ходе презентации решения задач, составлять обобщающие таблицы;

Составлять конспект математического текста, выделять главное, формулировать определения по описанию математических объектов;

Осуществлять перевод понятий из текстовой формы в графическую.



8 класс



Действительные числа

Обучающиеся научатся:

Использовать начальные представления о множестве действительных чисел;

Владеть понятием квадратного корня, применять его в вычислениях.

Обучающиеся получат возможность:

Развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

Развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).



Измерения, приближения, оценки

Обучающиеся научатся:

Использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Обучающиеся получат возможность:

Понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

Понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.



Уравнения

Обучающиеся научатся:

Решать различные виды квадратных уравнений и уравнений, сводящихся к квадратным, а также системы двух уравнений с двумя неизвестными;

Понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом.

Обучающиеся получат возможность:

Овладеть специальными приёмами решения квадратных уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики.



Неравенства

Обучающиеся научатся:

Понимать и применять терминологию и символику, связанные с понятием неравенства, свойства числовых неравенств;

Решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

Применять аппарат неравенств для решения задач различных из различных разделов курса.



Обучающиеся получат возможность научиться:

Разнообразным приёмам доказательства неравенств;

Уверенно применять аппарат неравенств для решения математических задач.



Числовые функции

Обучающиеся научатся:

Понимать и использовать функциональные понятия и язык (термины, символические обозначения);

Строить графики квадратных функций, исследовать их свойства на основе изучения поведения этих графиков;

Понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Обучающиеся получат возможность научиться:

Проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;

Использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.



Четырехугольники

Обучающиеся научатся:

Распознавать различные виды четырехугольников, их признаки и свойства.

Применять свойства четырехугольников при решении простых задач.

Обучающиеся получат возможность:

Решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.

Решать задачи на построение.



Площади фигур

Обучающиеся научатся:

Пользоваться языком геометрии для описания предметов окружающего мира.

Вычислять значения площадей основных геометрических фигур и фигур, составленных из них;

Применять формулы вычисления геометрических фигур, теорему Пифагора при решении задач.

Выполнять чертежи по условию задач

Обучающиеся получат возможность:

Знать формулы вычисления геометрических фигур, теорему Пифагора и уметь применять их при решении задач.

Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии.

Уметь решать задачи на доказательство и использовать дополнительные формулы для нахождения площадей геометрических фигур.



Подобные треугольники

Обучающиеся научатся:

Знать определение подобных треугольников.

Уметь применять подобие треугольников при решении несложных задач.

Уметь пользоваться языком геометрии для описания предметов окружающего мира.

Уметь распознавать геометрические фигуры, различать их взаимное расположение.

Уметь изображать геометрические фигуры.

Уметь выполнять чертежи по условию задач.

Знать признаки подобия треугольников, уметь применять их для решения практических задач.

Уметь находить синус, косинус, тангенс и котангенс острого угла прямоугольного треугольника.

Обучающиеся получат возможность:

Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.

Уметь применять признаки подобия треугольников для решения практических задач.

Уметь проводить доказательные рассуждения при решении задач, используя известные теоремы.

Уметь решать геометрические задачи на соотношения между сторонами и углами прямоугольного треугольника.



Окружность

Обучающиеся научатся:

Уметь вычислять значения геометрических величин.

Знать свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Уметь распознавать геометрические фигуры, различать их взаимное расположение.

Уметь решать задачи на построение.

Обучающиеся получат возможность:

Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.

Уметь проводить доказательные рассуждения при решении задач, используя известные теоремы.

Знать метрические соотношения в окружности: свойства секущих, касательных, хорд и уметь применять их в решении задач.

Иметь понятие о вписанных и описанных четырехугольниках.





9 класс



Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.



Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чисел;

• оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).



Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.



Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).





Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.



Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.



Основные понятия. Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, символические обозначения);

• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.



Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.



Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.



Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.



Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.



Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• углубить и развить представления о пространственных геометрических фигурах;

• научиться применять понятие развёртки для выполнения практических расчётов.



Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

• научиться решать задачи на построение методом геометрического места точек и методом подобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».



Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.



Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и доказательства;

• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».



Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».







Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.



Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чисел;

• оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).



Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.



Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).



Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.



Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.



Основные понятия. Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, символические обозначения);

• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.



Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.



Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.



Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.



Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• углубить и развить представления о пространственных геометрических фигурах;

• научиться применять понятие развёртки для выполнения практических расчётов.



Геометрические фигуры



Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

• научиться решать задачи на построение методом геометрического места точек и методом подобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».



Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.



Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и доказательства;

• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».



Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».





 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал