- Учителю
- Рабочая программа по геометрии 11 класс
Рабочая программа по геометрии 11 класс
-
Планируемые результаты освоения учебного предмета, курса
Выпускник научится
Выпускник получит возможность научиться
Натуральные числа. Дроби.
Рациональные числа
• понимать особенности десятичной системы счисления;
• оперировать понятиями, связанными с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
• познакомиться с позиционными системами счисления с основаниями, отличными от 10;
• углубить и развить представления о натуральных числах и свойствах делимости;
• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
• использовать начальные представления о множестве действительных чисел;
• оперировать понятием квадратного корня, применять его в вычислениях.
• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки
• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения
• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами;
• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
• выполнять разложение многочленов на множители.
• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов; применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
Уравнения
• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Неравенства
• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
• применять аппарат неравенств для решения задач из различных разделов курса.
• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
Основные понятия. Числовые функции
• понимать и использовать функциональные понятия и язык (термины, символические обозначения);
• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Числовые последовательности
• понимать и использовать язык последовательностей (термины, символические обозначения);
• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.
Описательная статистика
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
Случайные события и вероятность
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Наглядная геометрия
• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
• строить развёртки куба и прямоугольного параллелепипеда;
• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры, и наоборот;
• вычислять объём прямоугольного параллелепипеда
• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
• углубить и развить представления о пространственных геометрических фигурах;
• научиться применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
• решать простейшие планиметрические задачи в пространстве.
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек и методом подобия;
• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
• приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
• вычислять длину окружности, длину дуги окружности;
• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.
Координаты
• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
• использовать координатный метод для изучения свойств прямых и окружностей.
• овладеть координатным методом решения задач на вычисления и доказательства;
• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы
• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
• овладеть векторным методом для решения задач на вычисления и доказательства;
• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».
Изучение геометрии на ступени основного общего среднего образования направлено на достижение следующих целей:
• овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
• интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственного мышления и воображения, способности к преодолению трудностей;
• формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
• воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В курсе геометрии 11 класса условно выделены три основных раздела: метод координат, векторы и движения в пространстве, тела вращения, объёмы тел.
Раздел 1. Метод координат в пространстве. Векторы. Движения
Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.
Основная цель: сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами, сформировать умение применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве.
В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии. Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.
Раздел 3. Цилиндр, конус, шар
Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Цилиндр и конус. Фигуры вращения.
Площадь поверхности цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.
Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел.
В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматриваются на примере конкретных геометрических тел, изучается взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), решается большое количество задач, что позволяет продолжить работу по формированию логического мышления и графической культуры.
В данном разделе обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях.
Основная цель: сформировать представления о телах вращения, изучить случаи их взаимного расположения, выработать у учащихся систематические сведений об основных видах тел вращения, научить находить площадь боковой и полной поверхностей тел вращения.
Раздел 4.Объемы тел
Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей.
Понятие объема следует вводить по аналогии с понятием площади плоской фигуры.
Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства, так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливать, руководствуясь больше наглядными соображениями.
Учебный материал главы в основном должен усвоиться в процессе решения задач. Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.
Основная цель: сформировать представления учащихся о понятиях объема, вывести формулы объемов основных пространственных фигур, научить решать задачи на нахождение объемов, продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.
2. СОДЕРЖАНИЕ ОБУЧЕНИЯ
|
|
|
|
Тела и поверхности вращения. Цилиндр, конус, усечённый конус, их элементы. Площадь поверхности цилиндра и конуса. Сечения цилиндра и конуса. Шар и сфера. Уравнение сферы. Сечение шара плоскостью, касательная плоскость к сфере. Площадь сферы. Комбинации геометрических тел |
Распознаёт виды тел вращения и их элементы; вычисляет основные элементы тел вращения; обосновывает свойства тел вращения, использует их в решении задач; решает несложные задачи на вычисление площадей поверхностей тел вращения, на комбинацию пространственных фигур |
|
|
Понятие объёма. Основные свойства объёмов. Объём прямоугольного параллелепипеда, прямой призмы и цилиндра. Объём наклонной призмы, пирамиды и конуса. Объём шара. |
Формулирует основные свойства объёмов; записывает формулы для вычисления объёмов параллелепипеда, призмы, пирамиды, цилиндра, конуса; применяет определённый интеграл для вывода формул объёмов; решает несложные задачи на вычисление объёмов многогранников и тел вращения, используя основные формулы, разбиение тел на простые тела. |
|
|
3. Календарно-тематическое планирование учебного материала
Кол-во
часов
Дата проведения урока
Оборудование
Домашнее задание
по плану
по факту
1
Повторение. Многогранники
1
учебник
Задание в тетради
2
Повторение. Тела вращения
1
учебник
Задание в тетради
3
Диагностическая контрольная работа
1
карточки
повторить
4
Прямоугольная система координат. Координаты точки
1
учебник
435, 437
5
Простейшие задачи в координатах
1
учебник
450
6
Понятие вектора, координаты вектора, действия над векторами
1
учебник
452, 453
7
Понятие вектора, координаты вектора, действия над векторами
1
учебник
459
8
Скалярное произведение векторов
1
учебник
467
9
Скалярное произведение векторов
1
учебник
478
10
Решение задач по векторам
1
учебник
494
11
Движения
1
учебник
497
12
Движения
1
учебник
500, 504
13
Решение задач
1
учебник
Задание в тетради
14
Решение задач. Обобщающий урок по теме.
1
учебник
Задание в тетради
15
Контрольная работа № 1 по теме «Метод координат в пространстве»
1
карточки
повторить
16
Цилиндр
1
учебник
521, 523
17
Цилиндр
1
учебник
530, 531
18
Цилиндр, призма
1
учебник
Задание в тетради
19
Цилиндр, призма
1
учебник
Задание в тетради
20
Решение задач на комбинацию тел
1
Сб.ГИА
Задание в тетради
21
Решение задач на комбинацию тел
1
Сб.ГИА
Задание в тетради
22
Конус. Усеченный конус
1
учебник
560, 561
23
Конус. Усеченный конус
1
учебник
565, 566
24
Конус, пирамида
1
учебник
568, 572
25
Конус, пирамида
1
учебник
Задание в тетради
26
Сфера, шар
1
учебник
574, 580
27
Сфера, шар
1
учебник
582, 585
28
Решение задач на комбинацию тел
1
учебник
589, 590
29
Решение задач на комбинацию тел
1
учебник
Задание в тетради
30
Обобщающий урок по теме
1
учебник
Задание в тетради
31
Контрольная работа № 2 по теме «Цилиндр, конус, шар»
1
карточки
повторить
32
Объем прямоугольного параллелепипеда
1
учебник
657, 658
33
Объем прямой призмы и цилиндра
1
учебник
667, 668
34
Решение задач
1
учебник
728, 729
35
Решение задач
1
учебник
750, 751
36
Объем наклонной призмы, пирамиды, конуса.
1
учебник
679
37
Объем наклонной призмы, пирамиды, конуса.
1
учебник
695
38
Решение задач
1
учебник
Задание в тетради
39
Объем шара и его частей
1
учебник
711, 722
40
Объем шара и его частей
1
Учебник
Задание в тетради
41
Решение задач
1
учебник
728, 729
42
Обобщающий урок по теме
1
учебник
Задание в тетради
43
Контрольная работа № 3 по теме «Объемы тел»
1
карточки
повторить
44
Обобщающее повторение
1
учебник
Задание в тетради
45
Обобщающее повторение
1
учебник
Задание в тетради
46-51
Повторение курса геометрии 7-11 и подготовка к ГИА
6
Сб.ГИА
Сб.ГИА
10