7


  • Учителю
  • Программа по Алгебре 7-9 класс

Программа по Алгебре 7-9 класс

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 10 г. Татарска



ПРИНЯТО

решением методического

объединения учителей

от № _____

Согласовано

Зам. дир. По УВР (НМР) _________________Е.Т. Сергеевой

_________________











Рабочая программа

предмета «Алгебра»

для основного общего образования



















Составитель:

Бутенко Е.С.









2016

</



1. Пояснительная записка

Рабочая программа по алгебре составлена на основе

- нормативных документов:

  1. Об образовании в Российской Федерации : Федеральный закон от 29 декабря 2012 г. № 273-ФЗ.

  2. Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях» : постановление Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 г. № 189, г. Москва ; зарегистрировано в Минюсте РФ 3 марта 2011 г.

  3. Об утверждении федерального перечня учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях реализующих образовательные программы общего образования имеющих государственную аккредитацию на 2013/14 учебный год: приказ Министерства образования и науки Российской Федерации от 19 декабря 2012г. № 1067, г.Москва.

  4. Примерная основная образовательная программа образовательного учреждения : письмо департамента общего образования Министерства образования науки Российской Федерации от 01 ноября 2011 г. № 03-776.

  5. Федеральный государственный образовательный стандарт основного общего образования: приказ Минобрнауки России от 17 декабря 2010 г. № 1897.

  6. Приказ Министерства образования и науки РФ от 29 декабря 2014 г. N 1644

    "О внесении изменений в приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. N 1897 "Об утверждении федерального государственного образовательного стандарта основного общего образования"

  7. Основная образовательная программа основного общего образования МБОО СОШ № 10.

- информационно-методических материалов:

1.Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н.Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.:Просвещение, 2014.

2. Звавич, Л. И. Дидактические материалы по алгебре. 7 класс / Л. И. Звавич,

Л. В. Кузнецова, С.Б. Суворова. - М.: Просвещение, 2011.

3. Ерина Поурочное планирование по алгебре к учебнику Макарычева для 7 класса 2011г. (М. Просвещение)

4. А.П. Ершова, Дидактические материалы по алгебре. 7 класс / А.П. Ершова, В.В. Голобородько, А.С. Ершова.-М.: Илекса, 2011.

Цели изучения курса

Математическое образование является обязательной и неотъемлемой частью общего образования на всех уровнях обучения. Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития:

• формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

• развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

• формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

• воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

• формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

• развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении:

• развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

• формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

3) в предметном направлении:

• овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

• интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

• формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

• воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, и его применение к решению математических и нематематических задач;

  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  • изучение свойств геометрических фигур, формирование умения применять полученные знания для решения практических задач;

  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.





2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА





Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся. Их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики(словестный, символический, графический). Вносит вклад в формирование представлений о роли математики в развитии цивилизации культуры.

Раздел «Вероятность и статистика» - обязательный компонент школьного образования. Усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащегося функциональной грамотности - умений воспринимать и критически анализировать информацию. Представленную в различных формах. Понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов. В том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладывается основы вероятностного мышления.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределено - ходе рассмотрения различных вопросов курса. Соответствующих материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно- исторической среды обучения. Содержание этого раздела присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Математическое образование играет важную роль как практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная - с интеллектуальным развитием человека, формированием характера и общей культуры.

Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом, Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умение формулировать, обосновывать и доказывать суждения, тем самым развивая логическое мышление. Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную, информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические и графические) средства. Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в её современном толковании является общее знакомство с методами познания действительности. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, - усвоению идеи симметрии. История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представление о математике как части общечеловеческой культуры.

3. Описание места учебного предмета, курса в учебном плане.

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5-6 класс - «Математика», 7-9 класс - «Алгебра» и «Геометрия». Общее количество уроков в неделю с 5 по 9 класс составляет 27 часов (5-6 класс - по 6 часов в неделю, 7-9 класс - алгебра по 3 часа в неделю, геометрия - по 2 часа в неделю.)

















МЕСТО УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА» В УЧЕБНОМ ПЛАНЕКлассы



7

8

9

Предметы математического цикла

алгебра

алгебра

алгебра

Количество часов в неделю

3

3

3

Количество учебных недель

35

36



34

Количество часов на ступени основного образования

105

108

102



За курс обучения - 315ч.

4. Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра» 7-9 классы.



Личностными результатами изучения предмета «Алгебра» в 7-9 классе являются следующие качества:

- независимость и критичность мышления;

- воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

- система заданий учебников;

Метапредметными результатами изучения курса «Алгебра» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

7-9-й классы

- самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

- выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

- подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

- работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

- планировать свою индивидуальную образовательную траекторию;

- работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

- в ходе представления проекта давать оценку его результатам;

- самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

- уметь оценить степень успешности своей индивидуальной образовательной деятельности;

- давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

7-9-й классы

- анализировать, сравнивать, классифицировать и обобщать факты и явления;

- осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

- строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

- создавать математические модели;

- составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

- вычитывать все уровни текстовой информации.

- уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

- понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

- самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

- уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Коммуникативные УУД:

7-9-й классы

- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

- отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

- в дискуссии уметь выдвинуть контраргументы;

- учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

- понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

- уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.

Предметными результатами изучения предмета «Алгебра» являются следующие умения

7-й класс

Научится:

- выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений;

- решать задачи, содержащие буквенные данные, работать с формулами;

- выполнять преобразования выражений;

- решать линейные уравнения с одной переменной;

- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом.

- понимать и использовать функциональные понятия и язык (термины, символические обозначения);

- строить графики линейных функций; исследовать свойства линейных функций на основе поведения их графиков;

- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира.

решать систем двух уравнений с двумя переменными;

- применять графические представления для исследования и решения систем уравнений с двумя переменными;

- решать задачи с помощью систем уравнений.

- выражать числа в эквивалентной форме, выбирая наиболее подходящую в зависимости от конкретной ситуации;

- выполнять преобразования выражений, содержащих степени с целым показателем.

- выполнять преобразования выражений, содержащих степени с целым показателем.

Получить возможность:

- применять тождественные преобразования для решения задач из различных разделов курса.

- решать задачи, содержащие буквенные данные; работать с формулами;

- выполнять преобразования выражений, содержащих степени с целым показателем;

- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами.

владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

- выполнять преобразования выражений, содержащих степени с целым показателем;

- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами;

- выполнять разложение многочленов на множители

- понимать и использовать функциональные понятия и язык (термины, символические обозначения);

- строить графики функций y=x² и y= -x², исследовать свойства этих функций на основе поведения их графиков;

- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира

Получит возможность научиться:

- научиться использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ;

- применять тождественные преобразования для решения задач из различных разделов курса;

- овладеть специальными приемами решения уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики.

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики;

- использовать функциональные представления и свойства функций для решения математических задач из различных разделов математики

- применять графические представления для исследования систем уравнений, содержащих буквенные коэффициенты



8-й класс

научится:

- использовать начальные представления о множестве действительных чисел;

- оперировать понятием квадратного корня, применять его в вычислениях.

- использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин

-выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

-выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;



Получит возможность научиться:

- развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

- развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

- выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

- овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики.



9-й класс

научится:

- выполнять разложение многочленов на множители.

-решать квадратные неравенства с опорой на графические представления;

- применять аппарат неравенств для решения задач из различных разделов курса.

понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

- понимать и использовать язык последовательностей (термины, символические обозначения);

- применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

-находить относительную частоту и вероятность случайного события.

- решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Получит возможность научиться

- применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

- применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

-разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

- применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

-использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

-решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

- понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.

-приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

некоторым специальным приёмам решения комбинаторных задач.



Содержание учебного предмета «Алгебра»



7-й класс

Алгебра (105 часов)



1. Действительные числа

Натуральные числа и действия с ними. Делимость натуральных чисел.

Обыкновенные дроби и десятичные дроби. Бесконечные периодические и непериодические десятичные дроби. Действительные числа, их сравнение, основные свойства. Приближение числа. Длина отрезка. Координатная ось.

Контрольная работа «Действительные числа»



2. Одночлены и многочлены

Числовые и буквенные выражения.

Одночлен, произведение одночленов, подобные одночлены.

Многочлен, сумма и разность многочленов, произведение одночлена на многочлен, произведение многочленов. Целое выражение и его числовое значение.

Тождественное равенство целых выражений.

Контрольная работа по теме: «Многочлены».

3. Формулы сокращенного умножения



Квадрат суммы и разности. Выделение полного квадрата. Разность квадратов.

Сумма и разность кубов. Применение формул сокращенного умножения.

Разложение многочлена на множители.

Контрольная работа №3 по теме: «Формулы сокращенного умножения».

4. Алгебраические дроби



Алгебраические дроби и их свойства. Арифметические действия над алгебраическими дробями. Рациональное выражение и его числовое значение. Тождественное равенство рациональных выражений.

Контрольная работа по теме: «Алгебраические дроби».

5. Степень с целым показателем



Степень с целым показателем и ее свойства. Стандартный вид числа.

Преобразование рациональных выражений, записанных с помощью степени с целым показателем.

6. Линейные уравнения с одним неизвестным



Уравнение первой степени с одним неизвестным. Линейные уравнения с одним неизвестным. Решение линейных уравнений с одним неизвестным. Решение текстовых задач.

Контрольная работа по теме: «Линейные уравнения».

7. Системы линейных уравнений



Уравнение первой степени с двумя неизвестными

Системы двух уравнений первой степени с двумя неизвестными и способы их решения

Равносильность уравнений и систем уравнений

Решение систем двух линейных уравнений с двумя неизвестными

Решение задач при помощи систем линейных уравнений

Контрольная работа по теме: «Системы линейных уравнений».

8. Повторение



Многочлены. Формулы сокращенного умножения. Алгебраические дроби. Степень с целым показателем. Линейные уравнения.

Вводная контрольная работа. 1 час

Промежуточная контрольная работа. 1 час

Итоговая контрольная работа. 1 час.









8-й класс

Алгебра (108 часов)



1. Функции и графики

Числовые неравенства. Множества чисел. Функция, график функции. Функции

y = x, y = x2, y =1/ x , их свойства и графики.

Контрольная работа №1 по теме: «Функции и графики».

2. Квадратные корни

Квадратный корень. Арифметический квадратный корень. Приближенное вычисление квадратных корней. Свойства арифметических квадратных корней. Преобразование выражений, содержащих квадратные корни.

Контрольная работа по теме: «Квадратные корни».



3. Квадратные уравнения

Квадратный трехчлен. Квадратное уравнение. Теорема Виета. Применение квадратных уравнений к решению задач.

Контрольная работа по теме: «Квадратные уравнения».



4. Рациональные уравнения

Рациональное уравнение. Биквадратное уравнение. Распадающееся уравнения. Уравнение, одна часть которого алгебраическая дробь, а другая равна нулю. Рациональные уравнения Решение задач при помощи рациональных уравнений.

Контрольная работа по теме: «Рациональные уравнения».



5. Линейная функция

Прямая пропорциональная зависимость. График функции у = кх. Линейная функция и ее график



6. Квадратичная функция

Квадратичная функция и ее график.

Контрольная работа по теме: «Квадратичная функция».

7. Системы рациональных уравнений

Системы рациональных уравнений. Системы уравнений первой и второй степени. Решение задач при помощи систем уравнений первой и второй степени, систем рациональных уравнений.

Контрольная работа по теме: «Системы рациональных уравнений».

8. Графический способ решения систем уравнений

Графический способ решения систем двух уравнений с двумя неизвестными и исследования системы двух уравнений первой степени с двумя неизвестными.

Решение систем уравнений графическим способом.

9. Повторение

Вводная контрольная работа.

Промежуточная контрольная работа.

Итоговая контрольная работа.





9-й класс

Алгебра (102 часов)





1. Линейные неравенства с одним неизвестным

Неравенство с одной переменной. Неравенство первой степени с одним неизвестным. Решение неравенства. Линейные неравенства с одним неизвестным. Системы линейных неравенств с одним неизвестным. Линейные неравенства с одной переменной и их системы.



2. Неравенства второй степени с одним неизвестным

Квадратные неравенства. Неравенства второй степени с одним неизвестным. Неравенства, сводящиеся к неравенствам второй степени.

Контрольная работа «Неравенства второй степени с одним неизвестным»



3. Рациональные неравенства

Метод интервалов. Решение рациональных неравенств. Системы рациональных неравенств. Нестрогие рациональные неравенства.

Контрольная работа «Рациональные неравенства»



4. Корень степени п

Свойства функции у = хn и её график. Корень n-й степени. Корни чётной и нечётной степеней. Арифметический корень. Свойства корней n-й степени. Корень n-й степени.

Контрольная работа « Корень n-ой степени»



5. Последовательности

Понятие последовательности. Числовая последовательность. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Бесконечно убывающая геометрическая прогрессия.

Контрольная работа «Арифметическая прогрессия»

Контрольная работа «Геометрическая прогрессия»



6. Синус, косинус, тангенс и котангенс угла

Понятие угла, определение синуса и косинуса угла, основные формулы для sinα и cosα, тангенс и котангенс угла.

Контрольная работа «Синус, косинус, тангенс, котангенс»



7. Приближенные вычисления

Абсолютная и относительная погрешности приближения

1. Повторение



Вводная контрольная работа.

Промежуточная контрольная работа.

Итоговая контрольная работа.

































Тематическое планирование

Математика 7-9 классы ( 525ч + 105ч = 650ч)

Раздел «Алгебра»Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

Метапредметные умения и навыки

1

2

3

  1. Действительные числа (15+5=20 ч)



Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение т/п, где т - целое число, а п - натуральное число.

Степень с целым показателем. Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел.

Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч

Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней.

Формулировать определение корня третьей степени; находить значения кубических корней, при необходимости используя, калькулятор.

Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой.

Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа.

Описывать множество действительных чисел.

Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику

Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.

Умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации.





  1. Измерения, приближения, оценки (10+2=12 ч)



Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя - степени 10 в записи числа.

Прикидка и оценка результатов вычислений

Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.

Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире.

Сравнивать числа и величины, записанные с использованием степени 10.

Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.

Выполнять вычисления с реальными данными.

Выполнять прикидку и оценку результатов вычислений



Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Выполнять вычисления с реальными данными.



  1. Введение в алгебру (8+2=10 ч)



Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.

Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество

Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении

Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.



  1. Многочлены (45+4=49 ч)



Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.

Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители





Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений.

Выполнять действия с многочленами.

Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.



  1. Алгебраические дроби (22+6=28 ч)



Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей.

Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей.

Выполнять действия с алгебраическими дробями.

Представлять целое выражение в виде многочлена, дробное - в виде отношения многочленов; доказывать тождества.

Формулировать определение степени с целым показателем.

Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;



  1. Квадратные корни ( 12+5=17ч)



Понятия квадратного корня, арифметического квадратного корня. Уравнение вида х2=а. Свойства арифметических квадратных корней: корень из произведения, частного, степени; тождества, = а, где а

= Применение свойств арифметических квадратных корней для преобразования числовых выражений и вычислений

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений.

Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул.

Исследовать уравнение вида х2 = а; находить точные и приближенные корни при

а > 0

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характер.





  1. Уравнения с одной переменной (38+7=45 ч)



Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Решение уравнений, сводящихся к линейным.

Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение.

Примеры решения уравнений третьей и четвертой степени разложением на множители.

Решение дробно-рациональных уравнений.

Решение текстовых задач алгебраическим способом

Распознавать линейные и квадратные уравнения, целые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения.

Исследовать квадратные уравнения по дискриминанту и коэффициентам.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

  1. Системы уравнений (30+4=34 ч)



Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.

График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых.

Графики простейших нелинейных уравнений (парабола, гипербола, окружность).

Графическая интерпретация системы уравнений с двумя переменными

Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.

Решать системы двух уравнений с двумя переменными, указанные в содержании.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.

Строить графики уравнений с двумя переменными.

Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений

Использовать функционально-графические представления для решения и исследования уравнений и систем.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Использовать математические средства наглядности графики для интерпретации, аргументации.



  1. Неравенства (20+4=24 ч)



Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства.

Системы линейных неравенств с одной переменной

Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач.

Распознавать линейные и квадратные неравенства.

Решать линейные неравенства, системы линейных неравенств.

Решать квадратные неравенства на основе графических представлений

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Использовать математические средства наглядности графики для интерпретации, аргументации.









  1. Зависимости между величинами (15 +3=18ч)

Зависимость между величинами.

Представление зависимостей между величинами в виде формул. Вычисления по формулам.

Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.

Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей.

Решение задач на прямую пропорциональность и обратную пропорциональную зависимости

Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.

Распознавать прямую и обратную пропорциональные зависимости.

Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;





  1. Числовые функции (35+9=44 ч)



Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.

Примеры графиков зависимостей, отражающих реальные процессы.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.

Линейная функция, ее график и свойства.

Квадратичная функция, ее график и свойства.

Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций

;

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.

Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков изучаемых функций в зависимости от значений коэффициентов, входящих в формулы.

Строить графики изучаемых функций; описывать их

свойства

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



  1. Числовые последовательности. Арифметическая и геометрическая прогрессии (15+3=18 ч)



Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты

Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой п-го члена или рекуррентной формулой.

Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов.

Изображать члены последовательности точками на координатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания.

Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых л членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.



  1. .Описательная статистика (10+1=11 ч)



Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические

характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов.

Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон)

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.



  1. Случайные события и вероятность (15+1=16 ч)



Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий.

Приводить примеры равновероятных событий

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.







  1. Элементы комбинаторики (10 ч)



Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал

-

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.

Решать задачи на вычисление вероятности с применением комбинаторики

Понимать и использовать математические средства наглядности схемы для иллюстрации, интерпретации

  1. Множества. Элементы логики (5 ч)



Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.

Понятия о равносильности, следовании, употребление логических связок если то, в том и только том случае. Логические связки и, или

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.

Конструировать математические предложения с помощью связок если то, в том и только том случае, логических связок и, или

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.



Резерв -28ч































Раздел « Геометрия»



Прямые и углы (20ч)



Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Свойства биссектрисы угла и серединного перпендикуляра к отрезку.



Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи.



Уметь находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, понимать и использовать математические средства наглядности (чертежи) для иллюстрации, интерпретации.





















2.Треугольники (65ч.)

Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот и их продолжений

Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках.

Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников.

Объяснять и иллюстрировать неравенство треугольника.

Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.

Формулировать определение подобных треугольников.

Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора.

Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°.

Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов.

Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла.

Формулировать и доказывать теоремы синусов и косинусов.

Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.





3. Четырёхугольники (20ч)

Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.

Прямоугольник, теорема о равенстве диагоналей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равнобедренная трапеция

Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.

Исследовать свойства четырехугольников с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



4. Многоугольники (10ч)

Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

Распознавать многоугольники, формулировать определение и приводить примеры многоугольников.

Формулировать и доказывать теорему о сумме углов выпуклого многоугольника.

Исследовать свойства многоугольников с помощью компьютерных программ.

Решать задачи на доказательство и вычисления.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



5. Окружность и круг (20ч)

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.

Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Вписанные и описанные окружности правильного многоугольника.

Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью.

Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью.

Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Изображать и формулировать определения вписанных и описанных многоугольников и треугольников;

окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника.

Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



6 Геометрические преобразования (10ч)

Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.

Исследовать свойства движений с помощью компьютерных программ.

Выполнять проекты по темам геометрических преобразований на плоскости

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



  1. Построения с помощью циркуля и линейки (5ч)

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей

Решать задачи на построение с помощью циркуля и линейки.

Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры.

Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

  1. Измерение геометрических величин (25ч)

Длина отрезка. Длина ломаной. Периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника.

Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.

Формулировать и объяснять свойства длины, градусной меры угла, площади.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и иллюстрировать отношение площадей подобных фигур.

Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы.

Использовать формулы для обоснования доказательных рассуждений в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов

  1. Координаты (10ч)

Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности

Объяснять и иллюстрировать понятие декартовой системы координат.

Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.

Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов

  1. Векторы (10ч)

Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение вектор

Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.

Вычислять длину и координаты вектора.

Находить угол между векторами.

Выполнять операции над векторами.

Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства

Умение понимать и использовать математические средства наглядности.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  1. Элементы логики ( 5ч)

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример

Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы

Умение понимать и использовать математические средства наглядности.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;



  • Резерв времени - 15ч



  1. Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Алгебра»,

Описание учебно-методического и материально-технического обеспечения образовательного процесса

1.Нормативные документы: Примерная программа основного общего образования по математике

2.Учебники: по алгебре для 7-9 классов, по геометрии для 7-9 классов.

  • УМК Ю.Н.Макарычев « Алгебра» 7-9

  • УМК Л.С.Атанасян «Геометрия 7-9»

3.Научная, научно-популярная, историческая литература.

4.Справочные пособия (энциклопедии, словари, справочники по

математике и т.п.).

5.Печатные пособия: Портреты выдающихся деятелей математики.

6.Информационные средства

  • Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.

  • Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.

7.Технические средства обучения

    • Мультимедийный компьютер.

  • Мультимедийный проектор.

  • Экран навесной.

8. Учебно-практическое и учебно-лабораторное оборудование

  • Доска магнитная .

  • Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30°, 60°, 90°), угольник (45°, 90°), циркуль.

  • Комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных).

  • Комплект для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).

  • Комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных).



  1. Планируемые результаты изучения учебного предмета

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чисел;

• оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, символические обозначения);

• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• углубить и развить представления о пространственных геометрических фигурах;

• научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры



Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

• научиться решать задачи на построение методом геометрического места точек и методом подобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин



Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.



Координаты



Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и доказательства;

• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы



Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».



Натуральные числа. Дроби. Рациональные числа

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Алгебраические выражения

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций

для решения математических задач из различных разделов курса.

Числовые последовательности

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.









 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал