7


  • Учителю
  • Рабочая программа по алгебре 7 класс по учебнику Макарычева Ю. Н.

Рабочая программа по алгебре 7 класс по учебнику Макарычева Ю. Н.

Автор публикации:
Дата публикации:
Краткое описание: Рабочая программа учебного курса по алгебре для 7 класса разработана на основе Примерной программы основного общего образования (базовый уровень) С учетом требований федерального компонента государственного стандарта общего образования и в соответствии с авторской п
предварительный просмотр материала


Пояснительная записка



Рабочая программа учебного курса по алгебре для 7 класса разработана на основе Примерной программы основного общего образования (базовый уровень) С учетом требований федерального компонента государственного стандарта общего образования и в соответствии с авторской программой Ю. Н. Макарычева.


Используется учебно-методический комплект:

  • Рурукин А.Н., Лупенко Г.В., Масленникова И.А. Поурочные разработки по алгебре к учебнику Ю.Н.Макарычева, Москва, ВАКО, 2012

  • Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2012

  • Для изучения курса "Теория вероятностей и статистика" в 7 - 9 классах в нашей школе используется учебник Ю.Н.Тюрина, А.А.Макарова, И.Р.Высоцкого, И.В.Ященко. -М.:МЦНМО: ОАО "Московские учебники", 2010


Цели:

Изучение алгебры в 7 классах направлено на достижение следующих целей:

  • продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.


В ходе преподавания алгебры в 7 классах, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


Документы, обеспечивающие реализацию программы:

  • Закон «Об образовании в Российской Федерации» от 29.12.2012 № 273-ФЗ

  • Концепция модернизации российского образования на период до 2010 года (приказ МО РФ от 11.02.2002 г.)

  • Федерального базисного учебного плана.

  • Федеральный компонент государственного стандарта общего образования.

  • Стандарт основного общего образования по математике //Вестник образования России.- № 12.-е. 107-1Г9

  • Сборник нормативных документов. Математика / сост. Э.Д.Днепров, А.Г.Аркадьев. - Mi: Дрофа, 2007.'

  • Программы для общеобразовательных школ. Математика. - М.: Дрофа, 2004.

  • Обязательный минимум содержания, основного общего образования по предмету (Приказ МО от 19.05.1998 № 1276).

  • Региональный компонент стандарта общего образования.

  • Примерных учебных планов для образовательных учреждений РФ, реализующих программу общего образования, утвержденных приказом МО от 09.03.2004 г №1312.

  • Примерных программ по предметам.

  • Устава МБОУ «Калининская СОШ».


Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры в 7 класс отводится 3 часа в неделю. Всего 102 часа. Но в связи с тем, что программа по алгебре 7 класса очень насыщена теоретическим материалом, и очень мало часов отведено на практическую отработку, рекомендовано добавить 1 час из инвариантной части образовательной программы школы. Итого на текущий учебный год на предмет алгебра отведено 136 часов. Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных, контрольных, работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала.

Содержание программы по алгебре


  1. Выражения и их преобразования. Уравнения (27 ч.)

Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.

Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

  1. Функции (14 ч.)

Функция, область определения функции, Способы задания функции. График функции. Функция у=кх+Ь и её график. Функция у=кх и её график.

Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

  1. Степень с натуральным показателем (14ч.)

Степень с натуральным показателем и её свойства. Одночлен. Функции у=х2, у=х3, и их графики.

Основная цель - выработать умение выполнять действия над степенями с натуральными показателями.

4. Многочлены (21 ч.)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.

  1. Формулы сокращённого умножения (20ч.)

Формулы (a±b) = a2 ±2ab+b2, (a-b)(a + b) = а2-b2 ,[{a±b)(a2+ab+b2)]. Применение формул сокращённого умножения к разложению на множители.

Основная цель - выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

  1. Системы линейных уравнений (15 ч.)

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений.

7. Теория вероятностей и математическая статистика (18 ч.)

Элементы статистики. Начальные сведения об организации статистических исследований. Представление данных в виде таблиц, диаграмм, графиков. Среднее результатов измерений. Понятие и примеры случайных событий.

Основная цель- понимать практический смысл статистических характеристик.

  1. Повторение. Решение задач (10 ч.)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).


Федеральный компонент государственного стандарта образования

Разработан в соответствии с Законом «Об образовании в Российской Федерации» и Концепцией модернизации российского образования на период до 2010 года.

Обязательный минимум содержания курса алгебры 7 класса


1. Выражения, тождества, уравнения

Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений..

2. Функции

Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

3. Степень с натуральным показателем

Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

4. Многочлены

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

5. Формулы сокращенного умножения

Формулы (а ± b)2 = а2 ± 2ab + b2, (а ± b)3= а3 ± 3a2b + 3ab2 + b3, (а ± b) (а2 + ab + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.

6. Системы линейных уравнений

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

7. Теория вероятностей и математическая статистика

Элементы статистики. Начальные сведения об организации статистических исследований. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие и примеры случайных событий.

8. Повторение

Требования к математической подготовке учащихся 7 класса


В результате изучения алгебры ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • формулы сокращенного умножения;

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с натуральными показателями, с одночленами и многочленами; выполнять разложение многочленов на множители; сокращать алгебраические дроби;

  • решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений с двумя переменными;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • определять координаты точки плоскости, строить точки с заданными координатами, строить графики линейных функций и функции у=х2;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений и систем;

  • описывать свойства изученных функций, строить их графики;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.



Критерии и нормы оценки знаний учащихся


Оценка устных ответов учащихся.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;

  • отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.

  • допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «3», если ученик:

  • неполно или непоследовательно раскрыл содержание материала, но показал общее понимание вопроса и продемонстрировал умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).

  • имелись затруднения или допущены ошибки в определении понятий и использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность умений и навыков.

Ответ оценивается отметкой «2», если ученик:

  • не раскрыл основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допустил ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Ответ оценивается отметкой «1», если ученик:

  • обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.


Оценка письменных работ учащихся

Оценка «5» ставится, если:

- работа выполнена полностью;

- в логических рассуждениях и обоснованиях решения нет пробелов, ошибок;

- в решении нет математических ошибок (возможна одна неточность, описка).

Оценка «4» ставится, если:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);

- допущена одна ошибка, или есть два-три недочета в выкладках, рисунках, чертежах, графиках и т.д (если умения обосновывать рассуждения не являлись специальным объектом проверки).

Оценка «3» ставится, если:

- допущено более одной ошибки или более двух-трех недочетов в выкладках, рисунках, чертежах, графиках, но учащийся обладает обязательными умениями по проверяемой теме.

Оценка «2» ставится, если:

- допущены существенные ошибки, показавшие, что учащийся не обладает обязательными умениями по данной теме в полной мере.

Оценка «1» ставится, если:

- работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно;

- выполнено менее 1/3 части работы.




Тематика контрольных работ в 7 классе

Контрольная работа №1 «Выражения. Тождества».

Контрольная работа №2 «Уравнение с одной переменной».

Контрольная работа №3 «Линейная функция».

Контрольная работа №4 «Степень с натуральным показателем».

Контрольная работа №5 «Сложение и вычитание многочленов».

Контрольная работа №6 «Умножение многочленов».

Контрольная работа №7 «Формулы сокращенного умножения».

Контрольная работа №8 «Преобразование целых выражений».

Контрольная работа №9 «Системы линейных уравнений»

Итоговая контрольная работа



Тематическое планирование курса алгебры 7 класса.

( 4 часа в неделю, 136 часов в год)

Автор учебника Ю.Н.Макарычев, издательство «Просвещение»

п/п

Раздел, название урока в

поурочном планировании

Содержание

Дидактические единицы образовательного процесса

Кол - во часов


Дата



ПОВТОРЕНИЕ (6 часов)


1-5

Повторение курса математики 6 класса.

5

1.09

1.09

2.09

3.09

8.09


6

Входной тест



1

8.09


ВЫРАЖЕНИЯ, ТОЖДЕСТВА, УРАВНЕНИЯ. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ( 25 часов)


7,8


Числовые выражения.

Числовые выражения, значение числового выражения, порядок выполнения действий, арифметические законы сложения и умножения, действия с десятичными дробями, действия с обыкновенными дробями

Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».

Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.

2

9.09

10.09


9,10


Выражения с переменными.

Переменная, значение переменной, значение алгебраического выражения, допустимые и недопустимые значения переменной, алгебраические выражения.

2

15.09

15.09


11,12


Сравнение значений выражений.

Сравнение значений выражений в виде равенства или неравенства, строгие и нестрогие неравенства

2

16.09

17.09


13-15

Свойства действий над числами.

Переместительное, сочетательное и распределительное свойства сложения, следствие из этих свойств.

2

22.09

22.09



16-18

Тождества. Тождественные преобразования выражений.

Тождество, тождественно равные выражения, тождественные преобразования

1

23.09


19

Контрольная работа №1 «Выражения. Тождества».


Уметь применять изученную теорию при тождественных преобразованиях выражений.

1

24.09


20

Анализ контрольной работы.

Уравнение и его корни.

Переменная величина, постоянная величина, коэффициент при переменной величине, взаимное уничтожение слагаемых, преобразование выражений, корни уравнения, решение уравнений, линейное уравнение

Знать, что называется линейным уравнением с одной переменной, что значит решить уравнение, что такое корни уравнения.

Уметь решать линейные уравнения с одной переменной, а также сводящиеся к ним; правильно употреблять термины «уравнение», «корень уравнения», понимать их в тексте и в речи учителя, понимать формулировку задачи «решить уравнение»»; решать текстовые задачи с помощью составления линейных уравнений с одной переменной.

1

29.09


21-23


Линейное уравнение с одной переменной.

3

29.09

30.09

1.10


24-26

Решение задач с помощью уравнений.

Математическая модель, составление математической модели, решение задач

3

6.10

6.10

7.10


27,28

Среднее арифметическое, размах и мода.

Среднее арифметическое, размах, мода, медиана, статистика, статистические характеристики

Знать определения среднего арифметического, медианы, моды.

2

8.10

13.10


29,30

Медиана как статистическая характеристика.

2

13.10


31

Контрольная работа №2 «Уравнение с одной переменной».


Уметь применять изученную теорию при решении уравнений с одной переменной, решать задачи с помощью уравнений.

1

14.10




ФУНКЦИИ (15 часов)


32

Анализ контрольной работы.

Что такое функция. Вычисление значений функции по формуле.

Прямоугольная система координат, абсцисса, ордината, алгоритм построения и отыскания точки в прямоугольной системе координат, зависимая и независимая переменные, значение функции и ее аргумент, область определения функции, график функции

Линейное уравнение с двумя переменными, решение уравнения ах + ву + с = 0, бесконечно много решений, график уравнения, геометрическая модель, алгоритм построения графика функции ах + ву + с = 0;

Прямая пропорциональ-ность, коэффициент пропорциональности, график прямой пропор-циональности, угловой коэффициент, график линейной функции. Графики линейных функций параллельны, графики линейных функций пересекаются, алгебраическое условие параллельности и пересечения графиков линейных функций

Знать определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция - это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.

Уметь правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между

1

15.10


33-35

График функции.

3

20.10

20.10

21.10


36-38

Прямая пропорциональность и её график.

3

22.10

27.10

27.10


39-42

Линейная функция и её график.

4

28.10

29.10

10.11

10.11


43-45

Задание функции несколькими формулами.

3

11.11

12.11

17.11


46

Контрольная работа №3 «Линейная функция».


Уметь применять изученную теорию при выполнении письменных заданий, строить графики.

1

18.11



СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ ( 15 часов)


47,48

Анализ контрольная работа.

Определение степени с натуральным показателем.

Степень с натуральным показателем, степень, основание степени, показатель степени, возведение в степень, четная степень, нечетная степень. Степени числа 2, степени числа 3, степени числа 5, степени числа 7, степени составных чисел

Степени с разными основаниями, действия со степенями одинакового показателя, степень с нулевым показателем

Свойства степеней, доказательство свойств степеней, теорема, условие, заключение

Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2, у=х3.

Уметь находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3;

выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

2

19.11

24.11


49-51

Умножение и деление степеней.

3

24.11

25.11

26.11


52,53

Возведение в степень произведения и степени.

2

1.12

1.12


54,55

Одночлен и его стандартный вид.

Одночлен, стандартный вид одночлена, коэффициент одночлена

Умножение одночленов, корректная задача, не-

корректная задача. Возведение одночлена в натуральную степень

Парабола, ось симметрии параболы, ветви параболы, вершина параболы, функция y = x2 ее график и свойства. Кубическая парабола, функция y = x3 , ее график и свойства

2

2.12

3.12


56-58

Умножение одночленов. Возведение одночлена в степень.

3

8.12

8.12

9.12


59,60

Функции у=х2, у=х3 и их графики.

2

10.12

15.12


61

Контрольная работа №4 «Степень с натуральным показателем».


Уметь применять изученную теорию при построение графиков функций у=х2, у=х3, упрощать выражения, содержащие степени с натуральным показателем.

1

16.12



МНОГОЧЛЕНЫ (23 часа)


62,63

Анализ контрольной работы.

Многочлен и его стандартный вид.

Многочлен, члены многочлена, приведение подобных членов многочлена, стандартный вид многочлена, полином

Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки.

2

17.12

22.12


64

Административная контрольная работа за 1 полугодие


1

23.12


65,66

Анализ контрольной работы.

Сложение и вычитание многочленов.

. Сложение и вычитание многочленов взаимное уничтожение слагаемых, алгебраическая сумма многочленов, правила составления алгебраической суммы многочленов

Умножение многочлена на одночлен, распределительный закон умножения, вынесение общего множителя за скобки. Вынесение общего множителя за скобки, наибольший общий делитель коэффициентов, алгоритм отыскания общего множителя нескольких одночленов

2

24.12

12.01


67-69

Умножение одночлена на многочлен.

3

12.01

13.01

14.01


70-73


Вынесение общего множителя за скобки.

4

19.01

19.01

20.01

21.01


74

Контрольная работа №5 «Сложение и вычитание многочленов».


Применение изученного материала при выполнении действий с многочленами; преобразовании выражений.

1

26.01


75-79

Умножение многочлена на многочлен, п.29.

Анализ контрольной работы.

Раскрытие скобок, умножение многочлена на многочлен

Способ группировки разложение на множители. Тождество, тождественно равные выражения, тождественные преобразования

Уметь умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.



5

26.01

27.01

28.01

2.02

2.02


80-83

Разложение многочлена на множители способом группировки.

4

3.02

4.02

9.02

9.02



84

Контрольная работа №6 «Умножение многочленов».


Применение изученного материала при преобразовании выражений.

1

10.02



ФОРМУЛЫ СОКРАЩЕННОГО УМНОЖЕНИЯ (21 час)


85-87

Анализ контрольной работы.

Возведение в квадрат суммы и разности двух выражений.

Формулы возведения суммы и разности в квадрат

Знать формулы сокращенного умножения: квадратов суммы и разности двух выражений.

Уметь читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители.

3

11.02

16.02

16.02


88-90

Разложение на множители с помощью формул квадрата суммы и квадрата разности.

Разложение на множители с помощью формул сокращенного умножения

3

17.02

18.02

23.02



91-93

Умножение разности двух выражений на их сумму.

Произведение разности двух выражений на их сумму

3

23.02

24.02

25.02


94-96

Разложение разности квадратов на множители.

Формула разности квадратов

3

2.03

2.03

3.03


97-99

Разложение на множители суммы и разности кубов.

Формула разности кубов

3

4.03

9.03

9.03


100

Контрольная работа №7 «Формулы сокращенного умножения».


Уметь применять изученную теорию при выполнении письменных заданий по данной теме.

1

10.03


101,102

Анализ контрольной работы.

Преобразование целого выражения в многочлен.

Целое выражение, преобразование целых выражений в многочлен, решение уравнений, доказательство тождеств.

Способы разложения многочленов на множители

Знать различные способы разложения многочленов на множители.

Уметь применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

2

11.03

16.03


103,104

Применение различных способов для разложения на множители.

2

16.03

17.03


105

Контрольная работа №8 «Преобразование целых выражений».


Уметь применять изученную теорию при выполнении письменных заданий по данной теме.

1

18.03



СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ (19 часов)


106,107

Анализ контрольной работы.

Линейное уравнение с двумя переменными.

Линейное уравнение с двумя переменными, решение уравнения ах + ву + с = 0, равносильное уравнение, свойства линейного уравнения с двумя переменными.

Знать, что такое линейное уравнение с двумя переменными, система уравнений, знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение - это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.

Уметь правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.

2

1.04

6.04


108,109

График линейного уравнения с двумя переменными.

График уравнения с двумя переменными, геометрическая модель, алгоритм построения графика уравнения ах + ву + с = 0

2


6.04

7.04


110,111

Системы линейных уравнений с двумя переменными.

Система уравнений, решение системы уравнений, графический метод решения системы уравнений, система несовместима, система неопределенна

2

8.04

13.04


112-114

Способ подстановки.

Метод подстановки, система двух уравнений с двумя переменными, алгоритм решения системы двух уравнений с двумя переменными методом подстановки.

3

13.04

14.04

15.04


115-117

Способ сложения.

Система двух уравнений с двумя переменными, метод алгебраического сложения

3

20.04

20.04

21.04


118-123

Решение задач с помощью систем уравнений, п.45.

Составление математической модели реальной ситуации. Система двух линейных уравнений с двумя переменными

6

22.04

27.04

27.04

28.04

29.04

4.05


124

Контрольная работа №9 «Системы линейных уравнений»


Урок контроля, оценки знаний учащихся.

1

4.05



ИТОГОВОЕ ПОВТОРЕНИЕ (12 часов)


125,126

Анализ контрольной работы.

Линейное уравнение с одной переменной.

Переменная величина, постоянная величина, коэффициент при переменной величине, взаимное уничтожение слагаемых, преобразование выражений, корни уравнения, решение уравнений, линейное уравнение

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).

2

5.05

6.05


127

Линейная функция и её график.

Линейная функция, график линейной функции, взаимное расположение графиков линейных функций. Функция у = х 2 график функции

у = х2 , графическое решение уравнения

1

11.05


128

Степень с натуральным показателем.

Свойства степени с натуральным показателем, действия со степенями одинакового показателя

1

11.05


129,130

Многочлены и действия над ними.


2

12.05

13.05


131,132

Формулы сокращенного умножения. Разложение на множители.

Формулы сокращенного умножения, арифметические операции над многочленами, разложение многочленов на множители

2

18.05

18.05


133,134

Системы линейных уравнений с двумя переменными.

Метод подстановки, метод алгебраического сложения, система двух линейных уравнений с двумя переменными

2

19.05

20.05


135

Итоговая контрольная работа

Многочлен, члены многочлена, приведение подобных членов многочлена,

1


25.05


136

Итоговое занятие.


1

26.05





Список литературы:

  1. Примерная программа общеобразовательных учреждений по алгебре 7-9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова - М: «Просвещение», 2009

  2. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.- М.: Дрофа, 2010.

  3. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2012 год.

  4. Изучение алгебры в 7-9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..- М.: Просвещение, 2010-2012

  5. Уроки алгебры в 7 классе: кн. для учите­ля / В. И. Жохов, Л. Б. Крайнева. - М.: Просвещение, 2010-2012.

  6. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. - М.: Просвеще­ние, 2010-2012.

  7. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. -- М.: Просвещение, 2010г.



Дополнительная литература:

  1. Я иду на урок математики: 7 класс: Книга для учителя. - М.: Издательство «1 сентября», 2000;

  2. Алгебра. 7 класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Л.А Топилина, Т.Л. Афанасьева. - Волгоград: Учитель, 2012;

  3. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;

  4. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 7 классе- М.: «Вербум - М», 2000;

  5. Н.П.Кострикина Задачи повышенной трудности в курсе алгебры 7-9 классов - М : Просвещение», 1991;

  6. А.Г. Мордкович, П.В.Семенов События. Вероятности. Статистическая обработка данных. 7-9 классы. - М.: «Мнемозина»,2003;

  7. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. - М.: Просвещение,2005.


Нормативы количественной оценки учащихся

Количество часов в год

Количество оценок

136

Не менее 8 оценок в месяц



 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал