7


  • Учителю
  • Рабочая программа алгебра 8 класс

Рабочая программа алгебра 8 класс

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала



Муниципальное бюджетное общеобразовательное учреждение г. Иркутска средняя общеобразовательная школа № 22



Рассмотрено:

На заседании МО

Протокол №____

« ____» ___________2016г.

_____________руководитель МО





Согласовано:

заместитель директора по УВР

______________ Владимирова М.Н.

«____» ____________ 2016 г.

Утверждаю:

Директор МБОУ г. Иркутска

СОШ № 22

___________ Школьняк С.Ю.

№ _________ от ___________2016г.









Рабочая программа учебного предмета



математика « алгебра » _8 Б класс

базовый уровень





Составитель:

Антипина Ралия Карбангалиевна, учитель математики 1КК

Рабочая программа составлена на основе

примерной государственной программы по алгебре для общеобразовательных школ 7-9 классы













2016 г.





I. Пояснительная записка

Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов:

  1. Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. - М.: Просвещение

  2. Государственный стандарт основного общего образования по математике.

Программа соответствует учебнику «Алгебра. 8 класс» / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение

Преподавание ведется 3 часа в неделю, всего 102 часов в год.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В ходе освоения содержания курса учащиеся получают возможность:

  • развить представления о числе и роли вычислений в человеческой практике;

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь - умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.



Требования к математической подготовке учащихся 8 класса



В результате изучения алгебры ученик должен

  • знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • уметь

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

  • решать линейные неравенства с одной переменной и их системы;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

Планируемые результаты изучения курса алгебры

В результате изучения алгебры в 8 классе ученик должен знать и понимать

- определения основных понятий, изученных в 8 классе, основные формулы сокращенного умножения, обосновывать свои ответы, приводить нужные примеры.

К концу 8 класса учащиеся должны уметь:

-составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через другую;

-выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

-применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

-решать линейные, квадратные уравнения по общей формуле корней квадратного уравнения и теореме Виета, рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

-решать линейные с одной переменной и их системы;

-решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

-изображать числа точками на координатной прямой;

-определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

-находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей; знать свойства функций y=k/х, у=х2.

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

-выполнения расчётов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

-моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

-описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

Элементы статистики

-извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

-вычислять средние значения результатов измерений;

-находить частоту события, используя собственные наблюдения и готовые статистические данные;

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

-анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

-решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;

-понимания статистических утверждений.

II. Содержание курса

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса.

Содержание курса алгебры 8 класса включает следующие тематические блоки:Контрольные работы по тексту администрации:

-входной контроль

-промежуточный контроль

-итоговая контрольная по тексту администрации

итоговая контрольная





1

1

1

1



Итого

102ч

13

Характеристика основных содержательных линий

1. Рациональные дроби (23 ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей.

Тождественные преобразования рациональных выражений. Функция Рабочая программа алгебра 8 класс и ее график.

Основная цель - выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции Рабочая программа алгебра 8 класс.

2. Квадратные корни (19 ч)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция Рабочая программа алгебра 8 класс ее свойства и график.

Основная цель - систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество Рабочая программа алгебра 8 класс, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида Рабочая программа алгебра 8 класс . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция , ее свойства и график. При изучении функции показывается ее взаимосвязь с функцией , где x ≥ 0.

3. Квадратные уравнения (21 ч)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель - выр



 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал