7


  • Учителю
  • Рабочая программа по алгебре 9-11 класс (глухие)

Рабочая программа по алгебре 9-11 класс (глухие)

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

Государственное образовательное учреждение Тульской области

«Тульская специальная (коррекционная) общеобразовательная школа-интернат

для обучающихся, воспитанников с ограниченными возможностями здоровья»

Центр дистанционного образования









Утверждена

на заседании

педагогического совета

протокол №________ от ___.08.2013 г.



«Утверждаю»

Директор школы:

_____________С.А._Полянский_Приказ от ___________ № _____________







Рабочая программа

по предмету

«Алгебра» в 8 - 11 классах

(I вид)



на 2014-2015 учебный год

(образование с использованием информационно-коммуникационных технологий - дистанционное обучение)





Разработал: учитель математики

Володина Татьяна Алексеевна

Рассмотрена на заседании

ШМО учителей ЦДО

протокол №____ от ____.08. 2014 г.



Рассмотрена на

методическом совете протокол №____ от ____.08.2014 г.



Заместитель директора

по УВР: _________ /Буриличева Н. О./



Заместитель директора по УВР: _________ /Ковалева А.Г./













г. Тула, 2014

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по предмету «Алгебра» ориентирована на учащихся I вида и составлена на основе Федерального компонента государственного стандарта (приказ Министерства образования Российской Федерации от 05.03.2004 г № 1089.), примерной программы основного общего образования по математике, базовый уровень. (Сборник нормативных документов. Математика. Федеральный компонент государственного стандарта. Примерные программы по математике. - М.: Просвещение, 2011). Также использованы программы по алгебре: Алгебра. 7-9 классы/ Сост. Бурмистрова Т.А.- 3-е изд., стереотип.- М. Просвещение, 2008; 2-е изд. - 2011г.;



Место предмета в базисном учебном плане

В соответствии с приказом департамента образования Тульской области от 23.07.09 г. №1035 «Об утверждении примерных учебных планов специальных (коррекционных) образовательных учреждений I-VIII видов Тульской области» алгебра учащимися I вида изучается с 9 по 11 класс.

В соответствии с приказом департамента образования Тульской области от 07.08.2009г. № 1075 «Об утверждении примерных учебных планов для организации образовательного процесса для детей, нуждающихся в обучении на дому, временно по состоянию здоровья не посещающих общеобразовательные учреждения, реализующие программы общего образования» на изучение геометрии в 9-11 классах отводится 1 час в неделю. Общее число часов - 210:

9 класс - 70 часов (2 часа в неделю);

10 класс - 70 часов (2 часа в неделю);

11 класс - 70 часов (2 часа в неделю);



Общая характеристика учебного предмета

Математическое образование в основной школе скалывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия - один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становится обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности - умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.



Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

  • развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь - умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.



Изучение математики на ступени основного общего образования в средней школе на базовом уровне направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах алгебры как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.



Общеучебные умения, навыки и способы деятельности

В ходе преподавания математики в основной школе, работы над формированием у учащихся знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструированных новых алгоритмов;

  • решение разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирование новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики(словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательственных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.



Межпредметные связи

Межпредметные связи в обучении математике являются важным средством достижения прикладной направленности обучения математике. Возможность подобных связей обусловлена тем, что в математике и смежных дисциплинах изучаются одноименные понятия (векторы, координаты, графики и функции, уравнения и т.д.), а математические средства выражения зависимостей между величинами (формулы, графики, таблицы, уравнения, неравенства) находят применение при изучении смежных дисциплин. Такое взаимное проникновение знаний и методов в различные учебные предметы имеет не только прикладную значимость, но и создает благоприятные условия для формирования научного мировоззрения.

Изучение всех предметов естественнонаучного цикла взаимосвязано с математикой. Математика дает учащимся систему знаний и умений, необходимых в повседневной жизни и трудовой деятельности человека, а также важных для изучения смежных дисциплин (физики, химии, черчения, трудового обучения, астрономии и др.).

В курсе алгебры 9-11 классов последовательность расположения тем обеспечивает своевременную подготовку к изучению физики. При изучении физики целенаправленно применяются понятия пропорции, вектора, производной, функций, графиков и др.

Знания о процентах и умения решать уравнения используются в курсе химии.

Использование на уроках математики материала из художественных произведений, имеющего отношение к предмету, цитат известных людей о необходимости изучения математики позволяет внести в урок элементы занимательности и продемонстрировать связь математики с таким важным школьным предметом, как литература.

Из всех предметов общественно-гуманитарного цикла, изучаемых в школе, культурную значимость содержанию математики и ее методам исследования придает, несомненно, история.



Для достижения поставленных целей планируется использование образовательных технологий:

  • информационно-коммуникационная технология;

  • технология проблемного обучения;

  • развивающая технология;

  • тестовая технология,

а также различных методов и форм обучения: словесных (объяснение, дискуссия), в которые входит работа с учебником и книгой (конспектирование, составление плана текста, тезирование, цитирование, аннотирование, рецензирование), наглядных (метод иллюстраций, метод демонстраций, включающий в себя составление мультимедийных презентаций) и практических (тестирование, устные и письменные задания, творческие задания).



В программу внесены некоторые изменения:

В соответствии с приказом департамента образования Тульской области от 23.07.09 г. №1035 «Об утверждении примерных учебных планов специальных (коррекционных) образовательных учреждений I-VIII видов Тульской области» алгебра учащимися I вида изучается с 8 по 11 класс.

В соответствии с приказом департамента образования Тульской области от 07.08.2009г. № 1075 «Об утверждении примерных учебных планов для организации образовательного процесса для детей, нуждающихся в обучении на дому, временно по состоянию здоровья не посещающих общеобразовательные учреждения, реализующие программы общего образования» на изучение геометрии в 9-11 классах отводится 1 час в неделю. Общее число часов - 210:

9 класс - 70 часов (2 часа в неделю);

10 класс - 70 часов (2 часа в неделю);

11 класс - 70 часов (2 часа в неделю).



В связи с этим уменьшено время на изучение тем:8 класс

Алгебра





Повторение

Обыкновенные и десятичные дроби











Повторение. Выражения, тождества, уравнения

22

18

Функции

11

7

Степень с натуральным показателем

11

9

Многочлены

17

10

Формулы сокращенного умножения

19

12

Системы линейных уравнений

16

8

Повторение

6

6

Итого:

105

70

10 класс

Алгебра





Повторение. Рациональные дроби

23

16

Квадратные корни

19

13

Квадратные уравнения

21

16

Неравенства

20

12

Степень с целым показателем. Элементы статистики.

11

7

Повторение

8

6

Итого:

105

70

11 класс

Алгебра





Повторение. Квадратичная функция

22

21

Уравнения и неравенства с одной переменной

14

9

Уравнения и неравенства с двумя переменными

17

12

Арифметическая и геометрическая прогрессии

15

9

Элементы комбинаторики и теории вероятностей

13

8

Итоговое повторение за курс 9-11

21

11

Итого:

105

70



Распределение контрольных работ по классам.

9 класс - 11 контрольных работ

10 класс - 10 контрольных работ

11 класс - 8 контрольных работ



Основными формами контроля являются:

Урочные - традиционные:

  • контрольные работы (индивидуально - дифференцированные)

  • практические работы

  • самостоятельные работы (обучающие и контролирующие)

  • математические диктанты

  • тесты

  • рефераты, сообщения

Внеурочные

  • олимпиады



Оценка знаний учащихся

Под оценкой знаний, умений и навыков дидактика понимает процесс сравнения достигнутого учащимися уровня владения ими с эталонными представлениями, описанными в учебной программе. Как процесс, оценка знаний, умений и навыков реализуется в ходе контроля последних. Условным отражением оценки является отметка, обычно выражаемая в баллах. В настоящее время в нашей стране принята пятибальная система отметок.

"5" (отлично) ставится за глубокое и полное понимание программного материала, за умение самостоятельно разъяснять изучаемые положения, за логический и литературно правильно построенный ответ, за убедительность и ясность ответа, когда ученик не допускает ошибок.

"4" (хорошо) ставится за правильное и глубокое усвоение программного материала, однако в ответе допускаются неточности и незначительные ошибки, как в содержании, так и в форме построения ответа.

"3" (удовлетворительно) выставляется за то, что ученик знает основные, существенные положения учебного материала, но не умеет их разъяснить, допускает отдельные ошибки и неточности в содержании знаний и в форме построения ответа.

"2" (плохо) выставляется за плохое усвоение материала, а не за отсутствие знаний. Неудовлетворительный ответ показывает, что ученик знаком с учебным материалом, но не выделяет основных положений, допускает существенные ошибки, которые искажают смысл изученного материала. Как правило, такие ответы неубедительны ни для самого ученика, ни для учителя. На таком уровне знаний нельзя строить дальнейшее изучение программного материала и умственного развития ребенка.

"1" (очень плохо) ставится тогда, когда ученик не знаком с учебным материалом.



Результаты обучения

Результаты изучения курса «Алгебра» приведены в разделе «Требования к уровню подготовки выпускников», который полностью соответствует стандарту. Требования направлены на реализацию деятельностного, практикоориентированного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, востребованными в повседневной жизни.

Рубрика «Знать/понимать» включает требования к учебному материалу, который усваиваются и воспроизводятся учащимися.

Рубрика «Уметь» включает требования, основанные на более сложных видах деятельности, в том числе творческой: объяснять, изучать, распознавать и описывать, выявлять, сравнивать, определять, анализировать и оценивать, проводить самостоятельный поиск необходимой информации и т.д.

В рубрике «Использовать приобретенные знания и умения в практической деятельности и повседневной жизни» представлены требования, выходящие за рамки учебного процесса и нацеленные на решение разнообразных жизненных задач.





ОСНОВНОЕСОДЕРЖАНИЕ УЧЕБНОГО КУРСА «АЛГЕБРА»



9 класс (70 часов)



1. Выражения, тождества, уравнения. (18 часов)

Арифметические действия с обыкновенными дробями. Положительные и отрицательные числа. Числовые выражения. Выражения с переменными. Сравнение значений выражений. Свойства действий над числами. Тождества. Доказательства тождеств. Преобразования выражений. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Способы решения линейного уравнения. Среднее арифметическое, размах и мода. Медиана как статистическая характеристика.

Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующими звеном между курсом математики 5-6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≤, ≥ и, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.

2.Функции (7 часов)

Числовые функции. Понятие функции. Вычисление значений функции по формуле. График функции. Чтение графика функций. Прямая пропорциональность и ее график. Линейная функция, её график, геометрический смысл коэффициентов.

Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же работу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида - прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=kx, где k≠0, как зависит от значений k и b взаимное расположение графиков двух функций вида у=kx+b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

3. Степень с натуральным показателем (9 часов)

Определение степени с натуральным показателем. Свойства степеней с натуральным показателем. Возведение в степень произведения и степени. Упрощение выражений со степенями. Одночлен и его стандартный вид. Умножение одночленов. Возведение одночлена в степень. Парабола и кубическая парабола.

Основная цель - выработать умение выполнять действия над основными степенями с натуральными показателями.

В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств аmnm+n, аmnm-n , где m>n,(аm)n= аmn, (ав)nnвn учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции у = х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у = х2 и у = х3 используется для ознакомления учащихся с графическим способом решения уравнений.

4. Многочлены (10 часов)

Многочлены. Многочлены с одной переменной. Степень многочлена. Сложение и вычитание многочленов. Умножение одночлена на многочлен. Вынесение общего множителя за скобки. Умножение многочленов. Разложение многочлена на множители. Способ группировки.

Основная цель - выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами - сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

5. Формулы сокращенного умножения (11 часов)

Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формулы сокращенного умножения: куб суммы и куб разности. Разложение на множители с помощью формул квадрата суммы и квадрата разности. Умножение разности двух выражений на их сумму. Формула разности квадратов. Формула суммы кубов и разности кубов. Преобразование целого выражения в многочлен. Разложения многочлена на множители.

Основная цель - выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - b2, (а ± b)2 = а2 ± 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы (а ± b)3 = а3± 3а2b + Заb2 ± b3, а3±b3 = (а± b) (а2 + аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

6.Системы линейных уравнений (8 часов)

Система уравнений; решение системы. График линейного уравнения с двумя переменными. Системы двух линейных уравнений с двумя переменными. Решение систем уравнений подстановкой. Решение систем уравнений сложением. Решение задач с помощью систем уравнений.

Основная цель - ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения а + by = с, где а ≠ 0 или b≠0, при различных значениях а, b, с. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

7. Повторение. Решение задач (8 часов)



















































































ТРЕБОВАНИЯ К ЗНАНИЯМ, УМЕНИЯМ И НАВЫКАМ УЧАЩИХСЯ ПО АЛГЕБРЕ ЗА КУРС 9 КЛАССА



Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • натуральных, целых, рациональных, иррациональных, действительных числах;

  • степени с натуральными показателями и их свойствах;

  • одночленах и правилах действий с ними;

  • многочленах и правилах действий с ними;

  • формулах сокращённого умножения;

  • тождествах; методах доказательства тождеств;

  • линейных уравнениях с одной неизвестной и методах их решения;

  • системах двух линейных уравнений с двумя неизвестными и методах их решения.

  • Выполнять действия с одночленами и многочленами;

  • узнавать в выражениях формулы сокращённого умножения и применять их;

  • раскладывать многочлены на множители;

  • выполнять тождественные преобразования целых алгебраических выражений;

  • доказывать простейшие тождества;

  • находить число сочетаний и число размещений;

  • решать линейные уравнения с одной неизвестной;

  • решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

  • решать текстовые задачи с помощью линейных уравнений и систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

































10 класс (70 часов)



1. Рациональные дроби (16 часов)

Рациональные выражения. Нахождение значений рациональных выражений. Алгебраическая дробь. Основное свойство дроби. Применение основного свойства дроби. Сокращение дробей. Сложение и вычитание дробей с одинаковыми и разными знаменателями. Нахождение алгебраической суммы дробей с разными знаменателями. Преобразование рациональных выражений. Умножение дробей. Возведение дроби в степень. Деление дробей. Преобразование частного рациональных дробей и рациональных выражений. Действия с рациональными дробями. Функция обратная пропорциональность и свойства. Гипербола.

Основная цель - выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции у = k/х.

2. Квадратные корни (13 часов)

Рациональные числа. Иррациональные числа. Квадратные корни. Арифметический квадратный корень. Степенная функция с натуральным показателем и ее график. Нахождение приближенных значений квадратного корня. График функции: квадратный корень. Квадратный корень из произведения. Квадратный корень из дроби и из степени. Вынесение множителя из-под знака корня. Внесение множителя под знак корня. Освобождение от иррациональности в знаменателе. Преобразование выражений, содержащих квадратные корни. Преобразование иррациональных выражений. Упрощение иррациональных выражений.

Основная цель - систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразование выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество = /а/, которые получают применение в преобразовании выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби вида , . Умение преобразовывать выражения, содержащие корни, часто используются как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функцияy =, ее свойства и график. При изучении функции y = показывается ее взаимосвязь с функцией y = x2, где х0.

3. Квадратные уравнения (15 часов)

Определение квадратного уравнения. Неполные квадратные уравнения. Решение квадратных уравнений выделением квадрата двучлена. Решение квадратных уравнений по формуле. Формула корней квадратного уравнения с четным вторым коэффициентом. Теорема Виета. Решение дробно-рациональных уравнений. Составление алгоритма решения дробно - рациональных уравнений. Исследование корней дробно-рациональных уравнений. Решение задач с помощью дробно-рациональных уравнений. Решение задач на движение и на работу. Решение задач на сплавы и смеси. Графический способ решения уравнений.

Основная цель - выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bx + c =0, где а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

4. Неравенства (13 часов)

Числовые неравенства и их свойства. Сложение и умножение числовых неравенств. Доказательство числовых неравенств. Пересечение и объединение множеств. Числовые промежутки и их запись. Решение неравенств с одной переменной. Свойства равносильных неравенств. Решение систем неравенств с одной переменной..

Основная цель - ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие, как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильности неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ахb,ах b, остановившись специально на случае, когда а0.

В этой теме рассматриваются также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

5. Степень с целым показателем. Статистические исследования (7 часов)

Определение степени с целым отрицательным показателем. Свойства степени с целым показателем. Применение свойств степени с целым показателем. Стандартный вид числа. Сбор и группировка статистических данных. Представление статистических данных в виде таблицы частот и относительных частот. Наглядное представление статистической информации. Построение полигонов и гистограмм

Основная цель -выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпритации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательств этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

6. Повторение (6 часов)

Основная цель - повторить и систематизировать полученные в течение учебного года знания.











































ТРЕБОВАНИЯ К ЗНАНИЯМ, УМЕНИЯМ И НАВЫКАМ УЧАЩИХСЯ ПО АЛГЕБРЕ ЗА КУРС 10 КЛАССА



Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • алгебраической дроби; основном свойстве дроби;

  • правилах действий с алгебраическими дробями;

  • степенях с целыми показателями и их свойствах;

  • стандартном виде числа;

  • функциях, , , их свойствах и графиках;

  • понятии квадратного корня и арифметического квадратного корня;

  • свойствах арифметических квадратных корней;

  • функции , её свойствах и графике;

  • формуле для корней квадратного уравнения;

  • теореме Виета для приведённого и общего квадратного уравнения;

  • основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

  • методе решения дробных рациональных уравнений;

  • основных методах решения систем рациональных уравнений.

  • Сокращать алгебраические дроби;

  • выполнять арифметические действия с алгебраическими дробями;

  • использовать свойства степеней с целыми показателями при решении задач;

  • записывать числа в стандартном виде;

  • выполнять тождественные преобразования рациональных выражений;

  • строить графики функций , , и использовать их свойства при решении задач;

  • вычислять арифметические квадратные корни;

  • применять свойства арифметических квадратных корней при решении задач;

  • строить график функции и использовать его свойства при решении задач;

  • решать квадратные уравнения;

  • применять теорему Виета при решении задач;

  • решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

  • решать дробные уравнения;

  • решать системы рациональных уравнений;

  • решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.





11 класс (70 часов)



  1. Свойства функций. Квадратичная функция (21 час)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель - расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а 0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции - функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Обучающиеся знакомятся со свойствами степенной функции у= при четном и нечетном натуральном показателе n. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида, . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

  1. Уравнения и неравенства с одной переменной (9 часов)

Целые уравнения. Уравнение с несколькими переменными. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Квадратный трехчлен.разложение квадратного трехчлена на линейные множители.

Основная цель - систематизировать и обобщить сведения о решении целых и дробных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с>0, ах2 + bх + с<0, где а≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Формирование умений решать неравенства вида ах2 + bх + с>0, ах2 + bх + с<0, где а≠ 0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

  1. Уравнения и неравенства с двумя переменными (12 часов)

Уравнения и неравенства с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель - выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершаемся изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

  1. Прогрессии (9 часов)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель - дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

  1. Элементы комбинаторики и теории вероятностей (8 часов)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события. Доказательство от противного.

Основная цель - ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

  1. Повторение (11 часов)

Основная цель - Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.















































































ТРЕБОВАНИЯ К ЗНАНИЯМ, УМЕНИЯМ И НАВЫКАМ УЧАЩИХСЯ ПО АЛГЕБРЕ ЗА КУРС 11 КЛАССА



Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • свойствах числовых неравенств;

  • методах решения линейных неравенств;

  • свойствах квадратичной функции;

  • методах решения квадратных неравенств;

  • методе интервалов для решения рациональных неравенств;

  • методах решения систем неравенств;

  • свойствах и графике функциипри натуральном n;

  • определении и свойствах корней степени n;

  • степенях с рациональными показателями и их свойствах;

  • определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

  • Использовать свойства числовых неравенств для преобразования неравенств;

  • доказывать простейшие неравенства;

  • решать линейные неравенства;

  • строить график квадратичной функции и использовать его при решении задач;

  • решать квадратные неравенства;

  • решать рациональные неравенства методом интервалов;

  • решать системы неравенств;

  • строить график функции при натуральном nи использовать его при решении задач;

  • находить корни степени n;

  • использовать свойства корней степени nпри тождественных преобразованиях;

  • находить значения степеней с рациональными показателями;

  • решать основные задачи на арифметическую и геометрическую прогрессии;

  • находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

























ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ



В результате изучения математики ученик должен:

знать/понимать:

- существо понятия математического доказательства; примеры доказательств;

- существо понятия алгоритма; примеры алгоритмов;

- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

- как потребности практики привели математическую науку к необходимости расширения понятия числа;

- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.



АЛГЕБРА

уметь:

- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

- решать линейные и квадратные неравенства с одной переменной и их системы;

- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

- изображать числа точками на координатной прямой;

- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

- описывать свойства изученных функций, строить их графики;



использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

- моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

- интерпретации графиков реальных зависимостей между величинами.



ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

уметь:

- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

- извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

- решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

- вычислять средние значения результатов измерений;

- находить частоту события, используя собственные наблюдения и готовые статистические данные;

- находить вероятности случайных событий в простейших случаях;



использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- выстраивания аргументации при доказательстве (в форме монолога и диалога);

- распознавания логически некорректных рассуждений;

- записи математических утверждений, доказательств;

- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

- решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

- решения учебных и практических задач, требующих систематического перебора вариантов;

- сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

- понимания статистических утверждений.







ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ

а) учебная и методическая литература

  1. Алгебра. 7 класс: учеб.дляобщеобразоват. учреждений/ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; под ред. С.А. Теляковского. М.: Просвещение, 2011.

  2. Алгебра. 8 класс: учеб.дляобщеобразоват. учреждений/ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; под ред. С.А. Теляковского. М.: Просвещение, 2011г.

  3. Алгебра. 9 класс: учеб.дляобщеобразоват. учреждений/ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; под ред. С.А. Теляковского. М.: Просвещение, 2011г.

  4. Алгебра. Дидактические материалы. 7 калсс/ Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова. - М.: Просвещение, 2011.

  5. Алгебра. Дидактические материалы. 8 класс/ В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. - М.: Просвещение, 2009.

  6. Алгебра. Программы общеобразовательных учреждений. 7 - 9 классы. Составитель: Бурмистрова Т. А., М.: Просвещение, 2010

  7. Алгебра. Тематические тесты. 8 класс/ Ю.П. Дудницын, В.Л. Кронгауз. - М.: Просвещение, 2010.

  8. Контрольно - измерительные материалы. Алгебра: 7 класс/ Сост. Л.И. Мартышова. - М.: ВАКО, 2012.

  9. Контрольно - измерительные материалы. Алгебра: 8 класс/ Сост. Л.И. Мартышова. - М.: ВАКО, 2012.

  10. Контрольно - измерительные материалы. Алгебра: 9 класс/ Сост. Л.И. Мартышова. - М.: ВАКО, 2012.

  11. Нечаев М.П. Разноуровневый контроль качества знаний по математике: Практические материалы: 5 - 11 классы. - М.: «5 за знания»; Спб.: ООО «Виктория плюс», 2006.

  12. Олимпиадные задачи по математике. 5 - 8 классы. 500 нестандартных задач для проведения конкурсов и олимпиад: развитие творческой сущности учащихся/ авт. - сост. Н.В. Заболотнева. - Волгоград: Учитель, 2005.

  13. Оценка качества подготовки выпускников основной школы по математике/ Г.В. Дорофеев, Л.В. Кузнецова, Г.М. Кузнецова и др. - М.: Дрофа, 2001.

  14. Перельман Я.И. Занимательная алгебра/ Я.И. Перельман. - М.: АСТ: Астрель: ХРАНИТЕЛЬ, 2007.

  15. Программа. Планирование учебного материала. Математика. 5-6 классы / автор-составитель В.И. Жохов- М.: Мнемозина, 2010.- 31 с.»

  16. Саранцев Г.И. Методика обучения математике в средней школе: учеб.пособие для студентов мат. спец. пед. Вузов и ун-тов/Г.И. Саранцев. - М.: Просвещение, 2002.

  17. Ткачева М.В. Элементы статистики и вероятности: учеб.пособие для 7 - 9 кл. общеобразоват. учреждений/ М.В. Ткачева, Н.Е. Федорова. - М.: Просвещение, 2005.

  18. Фарков А.В. Внеклассная работа по математике. 5 - 11 классы/ А.В. Фарков. - М.: Айрис - пресс, 2009.

  19. Чулков П. Тринадцать турниров Архимеда/ П. Чулков. - М.: Чистые пруды, 2005, (Библиотечка «Первого сентября», серия «Математика»).



б) адреса сайтов в Интернете:

  • www.edios.ru- Эйдос - центр дистанционного образования

  • www.km.ru/education-Учебные материалы и словари на сайте «Кирилл и Мефодий»

  • Портал информационной поддержки единого государственного экзамена

  • Федеральный центр тестирования

  • ФИПИ. Банк тестовых заданий

  • Российский общеобразовательный портал</</font>

























































 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал