- Учителю
- «Перпендикуляр түзулер» Ашық сабақ. 7 сынып
«Перпендикуляр түзулер» Ашық сабақ. 7 сынып
Сыныбы: 7 «Ә»
Пәні: Геометрия
Сабақ тақырыбы: Перпендикуляр түзулер. Перпендикуляр және көлбеу.Нүктеден түзуге дейінгі қашықтық
Сабақтың мақсаты:
Білімдік:Перпендикуляр түзулерді анықтайды, перпендикуляр белгісін біледі және оны дәлелдейді; нүктеден түзуге түсірілген перпендикуляр, перпендикулярдың табаны, нүктеден түзуге дейінгі қшықтық, ұғымдарын анықтайды.
Дамытушылық: Ойлау қабілеттерін дамытады, салыстыруға, ой қорытындылауға баулу, байқағыштығын дамытады;
Тәрбиелік: Өз бетінше жұмыс істеуге бейімделуді жалғастырады; пәнге деген қызығушылықтарын арттырады; тиянақтылыққа, жылдам ойлауға үйренеді ;
Сабақ түрі: Жаңа білімді игеру сабағы
Сабақтың көрнекілігі: сызбалар
Сабақтың әдістері: сұрақ жауап, есептер шығару, баяндау,
Сабақ барысы:
Ұйымдастыру: Сабақтың мақсатын, жүру барысын айту, жұмыстық көңіл-күй қалыптастыру
Үй тапсырмасын сұрау
Жаңа сабақ:
перпендикуляр, көлбеу, көлбеудің проекциясы ұғымдары
AB және CD түзулері О нүктесінде қиылысып, бір - бірімен тік бұрыш жасасын (57-сурет). Сонда ∠ ВОD = 90 болады. Ол жазық бұрыштың жартысы болғандықтан, ∠DОА = 90, ∠СОВ = 90,. Бұдан ∠АОС = 90-қа тең. Бұл жағдайда АВ және СD түзулері перпендикуляр болады.
Анықтама. Тік бұрыш жасап қиылысқан екі түзу перпендикуляр түзулер деп аталады.
Түзулердің перпендикулярлығы «⟘» таңбасымен белгіленеді. Мына a⟘b жазуы оқылады « түзуі түзуіне перпендикуляр». Сонда «АВ түзуі СD түзуіне перпендикуляр» дегенді қысқаша АВ ⟘ СD деп жазамыз.
Перпендикуляр түзулерде жатқан кесінділер де, сәулелер де перпендикуляр болады. Яғни, 57-суреттегі ОВ және О сәулелері сондай -ақ OE, ON кесінділері деп перпендикуляр деп есептелінеді.
-
Теорема. Бір түзуге перпендикуляр екі түзу өзара параллель болады.
Дәлеледеу. a⟘c Және c⟘b болатын a,b,c түзулері берілген. (58 - сурет). ∠1= 90, ∠2=90 және∠1 мен∠2 - ішкі тұстас бұрыштар ∠1+∠2 180. Сонда түзулердің параллельдік белгісі бойынша a||b болады. Теорема дәлелденді.
2 - теорема. Егер түзу паралллеь түзулердің біріне перпендикуляр болса, онда ол екіншісіне де перпендикуляр болады.
3 - теорема. Түзудің әрбір нүктесі арқылы оған перпендикуляр тек бір ғана түзу жүргізуге болады.
Дәлеледу: Берілген a түзуінің бойынан (59 - сурет) кез келген О нүктесін алайық. a түзуі арқылы анықталған жарты жазықтықтардың бірінде ОА сәулесінен бастап ∠АОС = 90 болатын бұрышты өлшеп алайық. Сонда ОС ⟘ ОА болады. ОС сәулесіне толықтауыш сәулесін жүргізсек, түзуі анықталады. Демек, b⟘a
Енді О нүктесі арқылы өтетін және a түзуіне перпендикуляр бір ғана b түзуі болатынын көрсетейік. ОC сәулесі жатқан жарты жазықтықта ОС1 ⟘ ОА болатынын тағы бір ОС1сәулесі бар деп есептесек, ол түзуін анықтайды. Сонда ∠АОС1 = 90. Бірақ IV2 аксиомасы бойынша берілген жарты жазықтықта ОА сәулесінен бастап 90- қа тең болатын бір ғана бұрышты өлшеп салуға болады. Демек, ОС1 сәулесі ОС сәулесіне b немесе b1 түзуі түзуіне дәл келеді.
Сонымен a түзуінің О нүктесі арқылы өтетін, оған перпендикуляр бір ғана b түзуі бар. Теорема дәлелденді.
4 - теорема. a Түзуден тысқары жатқан нүкте арқылы осы түзуге перпендликуляр бір ғана түзу жүргізуге болады.
Дәлелдеу. a түзуі және одан тысқары жатқан В нүктесі берілсін. (60-сурет). В нүктесі арқылы a түзуіне параллель түзуін жүргіземіз. В нүктесі арқылы b⟘c түзуін жүргіземіз. Сонда c⟘a, яғни олар А нүктесінде қиылысады.
В нүктесі арқылы өтетін жәнеa түзуіне перпендикуляр бір ғана с түзуі бар. Керісінше тағы бір с1 түзуі бар деп есептейік. Сонда а түзуіне перпендикуляр с, с1 екі түзу В нүктесінде қиылысып қалдар еді. Бұл 3 -теоремаға қайшы. Демек, В нүктесі арқылы өтетеін және берілген а түзуіне перпендикуляр бір ғана түзу бар. Теорема дәлелденді.
В нүктесінен а тү.зуіне түсірілген ВА кесіндісін - перпендикуляр, ал ВС кесіндісін - көлбеу деп атайды (60-сурет). А нүктесі ВA перпендикулярының табаны, С нүктесі ВC көлбеудің табаны, АC кесіндісі ВC көлбеудің а түзуіндегі проекциясы деп аталады.
ВА кесіндісінің ұзындығын В нүктесінен а түзуіне дейінгі қашықтық деп те атайды.
Салдар. Параллель екі түзудің арақашықтығы олардың бірінің кез келген нүктесінен екіншісіне түсірілген перпендикулярдың ұзындығына тең.
Есептер шығару
120. а және b түзулерінің қиылысуында пайда болған бұрыштардың үшеуі өзара тең. а ┴ b екенін дәлелдендер.
Шешуі. Қиылысқан а және b түзулері берілсін.Олар қиылысқанда пайда болған бұрыштардың үшеуін 1; 2 және 3 деп белгілейік. Шарт бойынша <1=<2=<3 . <1 мен <2 ( немесе <2 мен <3) сыбайлас болғандықтар олардың қосындысы 180°- қа тең. Ондықтан олардың әрқайсысы 90° - тан. Бұл түзулердің өзара перпендикуляр болатынын көрсетеді.
123. АВ және СD перпендикуляр түзулері О нүктесінде қиылысады. ОЕ және ОF сәулелері ОD сәулесімен бір жарты жазықтықта жатады және <���������������������������������
���������������������������������������������������������������������������������������������������������������������������
����: 62°, 43°.
Өздік жұмыс
№1
Екі доғал бұрыштың ортақ қабырғасы бар, ал қалған екі қабырғасы өзара перпендикуляр.
Егер доғал бұрыштар тең екендігі белгілі болса, доғал бұрыштың шамасын тап.
Жауабы:
∠АОВ = ∠АОС
ВО⟘ ОС,
∠ВОС = 90
2∠АОВ = 360 - 90 =270
∠АОВ = 135
№2
Жазыңқы бұршытың төбесінен екі сәуле жүргізілген, олар оны ұш тең бөлікке бөледі. Ортаңғы бұрыштың биссектрисасы жазыңқы бұрыштың қабырғаларына перпендикуляр екендігін дәлелдеу керек.
Жауабы:
∠АОВ = ∠ВОС = ∠СОD=60, ОК - биссектриса,
∠СОК = ∠ВОК = 30
∠DOK = 90
∠АОК= 90
Сабақты қорытындылау
бағалау:
Үйге тапсырма: №124,125 есептер