- Учителю
- Рабочая программа по алгебре 7 класс к УМК Мордковича (пояснительная записка)
Рабочая программа по алгебре 7 класс к УМК Мордковича (пояснительная записка)
-
Пояснительная записка
Рабочая программа по алгебре для 7 класса составлена в соответствии с положениями Федерального государственного образовательного стандарта основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, Программы по алгебре И.И. Зубаревой, А.Г. Мордковича к учебнику А.Г. Мордковича и др. (М.: Мнемозина, 2012). Примерной программы основного общего образования по математике. Федерального перечня учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих программы общего образования.
Цели и задачи изучения алгебры
На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:
-
сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
-
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
-
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
-
развить логическое мышление и речь - умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
-
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Обучение математике в основной школе направлено на достижение следующих целей:
1. В направлении личностного развития:
• развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
• формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
• воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
• формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
• развитие интереса к математическому творчеству и математических способностей.
2. В метапредметном направлении:
• формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
• развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
• формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
3. В предметном направлении:
• овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
-
Общая характеристика учебного предмета
Цели обучения математике в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека.
Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.
Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения - от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.
Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, все больше специальностей, требующих высокого уровня образования, связаны с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и многое другое). Таким образом, расширяется круг школьников, для которых математика становится профессионально значимым предметом.
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач - основной учебной деятельности на уроках математики - развиваются творческая и прикладная стороны мышления.
Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в ее современном толковании является общее знакомство с методами познания действительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления. История развития математического знания дает возможность пополнить запасы историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Курс алгебры построен в соответствии с традиционными содержательно-методическими линиями: числовой, функциональной, алгоритмической, уравнений и неравенств, алгебраических преобразований.
Одной из главных особенностей курса алгебры является то, что в нем реализуется взаимосвязь принципов научности и доступности и уделяется особое внимание обеспечению прочного усвоения основ математических знаний всеми учащимися.
Особенностью курса является также его практическая направленность, которая служит стимулом развития у учащихся интереса к алгебре, а также основной для формирования осознанных математических навыков и умений.
«Идеология» основного курса алгебры делает его органическим продолжением и обобщением курса арифметики. Центральное понятие этого курса - понятие числа - развивается и расширяется от рационального до действительного. Усвоение алгебры осуществляется успешно, если изучение теоретического материала проходит в процессе решения задач. Этим достигается осмысленность и прочность знаний учащихся.
Большое количество разнообразных задач на применение алгебры в геометрии, физике, технике и т.д. помогает учащимся понять практическую необходимость изучения алгебры.
В ходе преподавания алгебры в 7 классе, работы над формированием у учащихся универсальных учебных действий следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
• планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
• решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
• исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки
и формулирования новых задач;
• ясного, точного, грамотного изложения своих мыслей в устной и письменной форме, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
• проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
• поиска, систематизации, анализа и классификации информации, использования разнообразных
информационных источников, включая учебную и справочную литературу, современные информационные технологии.
-
Место предмета в учебном плане.
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения алгебры на этапе основного общего образования отводится 3 часа в неделю итого 102 часа. Предусмотрено 7 тематических контрольных работ и 1 итоговая контрольная работа.
-
Личностные, метапредметные и предметные результаты освоения алгебры.
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов:
1. В направлении личностного развития:
• умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
• критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
• представление о математической науке как сфере человеческой деятельности, об этапах ее
развития, о ее значимости для развития цивилизации;
• креативность мышления, инициатива, находчивость, активность при решении математических задач;
• умение контролировать процесс и результат учебной математической деятельности;
• способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
2. В метапредметном направлении:
• умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
• умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
• умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
• умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
• умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
• понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
• умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
• умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
• первоначальные представления об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.
3. В предметном направлении:
предметным результатом изучения курса является сформированность следующих умений.
Предметная область «Арифметика»
• Переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную - в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;
• выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа, находить в несложных случаях значения степеней с целыми показателями, находить значения числовых выражений;
• округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых выражений;
• пользоваться основными единицами длины, массы, времени, скорости, площади, объема, выражать более крупные единицы через более мелкие и наоборот;
• решать текстовые задачи, включая задачи, связанные с отношением и пропорциональностью величин, с дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
• устной прикидки и оценки результата вычислений, проверки результата вычисления с использованием различных приемов;
• интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Предметная область «Алгебра»
-
Составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое, выражать из формул одну переменную через остальные;
-
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями, выполнять разложение на множители, выполнять тождественные преобразования рациональных выражений;
-
решать линейные уравнения, системы двух линейных уравнений с двумя переменными;
-
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;
-
изображать числа точками на координатной прямой;
-
определять координаты точки плоскости, строить точки с заданными координатами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами, нахождения нужной формулы в справочных материалах;
-
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
-
описания зависимостей между физическими величинами соответствующими формулами при исследованиями несложных практических ситуаций.
Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»
-
Проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
-
извлекать информацию, представленную в таблицах, на диаграммах, на графиках, составлять таблицы, строить диаграммы и графики;
-
решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;
-
вычислять средние значения результатов измерений;
-
находить частоту события, используя собственные наблюдения и готовые статистические данные;
-
находить вероятности случайных событий в простейших случаях.
-
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
выстраивания аргументации при доказательстве и в диалоге;
-
распознавания логически некорректных рассуждений;
-
записи математических утверждений, доказательств;
-
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
-
решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;
-
решения учебных и практических задач, требующих систематического перебора вариантов;
-
сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
-
понимания статистических утверждений.
-
Содержание учебного предмета
Математический язык. Математическая модель. (13 час.)
Числовые и алгебраические выражения. Что такое математический язык и математическая модель.
Линейное уравнение с одной переменной. Линейное уравнение с одной переменной как математическая модель реальной ситуации. Координатная прямая. Виды числовых промежутков на координатной прямой.
Линейная функция. (13 час.)
Координатная плоскость. Линейное уравнение с двумя переменными. Линейная функция. Возрастание и убывание линейной функции. Взаимное расположение графиков линейных функций.
Системы двух линейных уравнений с двумя переменными. ( 12 час.)
Основные понятия о системах двух линейных уравнений с двумя переменными. Методы решения систем двух линейных уравнений с двумя переменными: графический, подстановки и алгебраического сложения. Системы двух линейных уравнений как математические модели реальных ситуаций.
Степень с натуральным показателем. ( 9час.)
Понятие степени с натуральным показателем. Свойства степеней. Степень с нулевым показателем.
Одночлены. Операции над одночленами. ( 8 час.)
Понятие одночлена. Стандартный вид одночлена. Сложение и вычитание одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.
Многочлены. Операции над многочленами. (15 час.)
Понятие многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Формулы сокращенного умножения. Деление многочлена на одночлен.
Разложение многочленов на множители. (16 час.)
Понятие о разложении многочлена на множители. Вынесение
общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью
формул сокращенного умножения и комбинации различных приемов. Сокращение алгебраических дробей. Тождества.
.
Функция у = х2. ( 10 час.)
Функция у = х2 и ее график. Функция у = -х2 и ее график. Графическое решение уравнений. Функциональная символика.
Обобщающее повторение. ( 6 час.)
-
Учебно-методическое и материально - техническое обеспечение
Список литературы для учителя:
-
Алгебра. 7 класс. Контрольные работы для учащихся общеобразоват. учрежд./ Л.А.Александрова; под ред. А.Г.Мордковича. - М.: Мнемозина, 2009. - 39 с.
-
Алгебра. Тесты для промежуточной аттестации. 7-8 класс./ Под ред. Ф.Ф.Лысенко. - Ростов-на-Дону: Легион-М, 2009. - 224 с.
-
Александрова Л.А. «Самостоятельные работы. Алгебра -7» - М.: Мнемозина, 2007
-
Лысенко Ф.Ф. «Учебно-тренировочнные тестовые задания » - Ростов на Дону: Легион, 2008
-
Ключникова Е.М., Комиссарова И.В. «Тесты по алгебре» к учебнику А.Г.Мордковича «Алгебра.7 класс» - М.: Экзамен, 2010
-
Контрольно- измерительные материалы. Алгебра: 7 класс \ Сост Л.И.Мартышова. - М.:ВАКО, 2010.- 96с.
-
Математика: еженедельное приложение к газете «Первое сентября»
-
Математика в школе: ежемесячный научно-методический журнал.
-
Мордкович А.Г. «Алгебра-7» часть 1 , учебник - М.: Мнемозина, 2014
-
Мордкович А.Г. «Алгебра-7» часть 2, задачник - М.: Мнемозина, 2014
-
Мордкович А.Г. «Тесты по алгебре для 7 - 9 классов» - М.: Мнемозина, 2007
-
Мордкович А.Г. «Алгебра 7-9»: методическое пособие для учителей - М.: Мнемозина, 2007
-
Мордкович А.Г., Семенов П.В. «События. Вероятности. Статистическая обработка данных»: дополнительные параграфы к курсу алгебры 7 - 9 классов - М.: Мнемозина, 2008
-
Настольная книга учителя математики: Справочно-методическое пособие/Сост. Л.О.Рослова.- М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.-429 с.
-
Попов М.А. Контрольные и самостоятельные работы по алгебре: 7 класс: к учебнику А.Г.Мордковича и др. «Алгебра. 7 класс».- М.: Издательство «Экзамен», 2009. - 63 с.
-
Программы. Математика. 5-6 кл. Алгебра. 7-9 кл. Алгебра и начала математического анализа. 10-11 кл./авт.-сост. И.И. Зубарева, А.Г. Мордкович. - М.: Мнемозина, 2011. - 63 с.
-
«Я иду на урок математики, 7 класс, алгебра», библиотека «Первого сентября», 2001 г.
Литература для учеников:
-
Алгебра. 7 класс. Тематические тестовые задания для подготовки к ГИА/авт.-сост. Л. П. Донец. Ярославль: Академия развития, 2012
-
Алгебра. 7 класс. 224 диагностических варианта/ В. И. Панарина. - М.: Национальное образование, 2012
-
Александрова Л.А. «Самостоятельные работы. Алгебра -7» - М.: Мнемозина, 2007
-
Ключникова Е.М., Комиссарова И.В. «Тесты по алгебре» к учебнику А.Г.Мордковича «Алгебра.7 класс» - М.: Экзамен, 2010
-
Мордкович А.Г. «Алгебра-7» часть 1 , учебник - М.: Мнемозина, 2007
-
Мордкович А.Г. «Алгебра-7» часть 2, задачник - М.: Мнемозина, 2007
-
Мордкович А.Г. «Тесты по алгебре для 7 - 9 классов» - М.: Мнемозина, 2007
-
Мордкович А.Г., Семенов П.В. «События. Вероятности. Статистическая обработка данных»: дополнительные параграфы к курсу алгебры 7 - 9 классов - М.: Мнемозина, 2005
Для информационно-компьютерной поддержки учебного процесса предполагается использование следующих программно-педагогических средств, реализуемых с помощью компьютера:
1. CD «1С: Репетитор. Математика» (КиМ);
2. CD «АЛГЕБРА не для отличников» (НИИ экономики авиационной промышленности);
3. Математика, 5-11.
4. Набор ЦОР к учебнику «Математика 5» И. И. Зубарева, А. Г. Мордкович
-
Интернет-ресурсы.
В работе используются презентации, взятые с образовательных сайтов:
-
Планируемый уровень подготовки выпускников 7 класса на конец учебного года в соответствии с требованиями, установленными ФГОС
Данной программой предусмотрено, что в процессе изучения обучающиеся научатся ( будут знать и понимать):
-
существо понятия математического доказательства; примеры доказательств;
-
существо понятия алгоритма; примеры алгоритмов;
-
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
-
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
-
как потребности практики привели математическую науку к необходимости расширения понятия числа;
-
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
-
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
-
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
-
определение степени с натуральным показателем, свойства степеней;
-
определение одночлена, его стандартный вид;
-
определение многочлена, его стандартный вид;
-
формулы сокращенного умножения;
-
основные функциональные понятия и графики функций у = kx + b, y = kx;
-
определение, свойства, график функции y=x2, понятие о непрерывных и разрывных функциях, функциональную символику;
-
основные способы решения систем линейных уравнений с двумя переменными: метод
-
подстановки, метод алгебраического сложения, графический метод.
Учащиеся получат возможность научиться:
-
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
-
решать линейные, сводящиеся к ним, системы двух линейных уравнений;
-
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
-
изображать числа точками на координатной прямой;
-
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
-
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
-
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
-
описывать свойства изученных функций, строить их графики;
-
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
-
применять формулы сокращенного умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители, комбинировать различные приемы;
-
сокращать алгебраические дроби;
-
выполнять сложение, вычитание, умножение, возведение в натуральную степень, деление одночлена на одночлен.
-
выполнять действия над степенями с натуральными показателями.
-
выполнять сложение, вычитание, умножение, деление многочленов.
-
строить и читать графики линейной функции, находить наибольшее и наименьшее значения линейной функции на заданном промежутке.
-
находить наибольшее и наименьшее значения функции на заданном промежутке,
-
строить и читать график функции y=x2, «кусочных» функций, решать уравнения графическим способом.
-
решать системы линейных уравнений с двумя переменными
-
применять решение систем линейных уравнений при решении текстовых задач.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
расчетов, включающих простейшие формулы;
-
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
-
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
-
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
-
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
-
интерпретации графиков реальных зависимостей между величинами.