7


  • Учителю
  • 'Рабочая программа основного общего образования по математике в 8 классе'

'Рабочая программа основного общего образования по математике в 8 классе'

Автор публикации:
Дата публикации:
Краткое описание:  Рабочая программа по математике (алгебре) для 8 класса составлена на основе образовательной программы по математике основного общего образования МБОУ СОШ с. Вазерки им. В.М. Покровского.В соответствии с учебным планом МБОУ СОШ с. Вазерки им. В.М. Покровского на изучение д
предварительный просмотр материала

Принята на заседании педагогического совета Муниципального бюджетного общеобразовательного учреждения средней общеобразовательной школы

с. Вазерки им. В.М.Покровского

Протокол №1, от «29» августа 2014 г


Утверждаю

Директор МБОУ СОШ

с. Вазерки им.В.М.Покровского

__________О.В.Коновалова

Приказ № 46.1/01-09

От 01.09.2014 г.



Рабочая программа

основного общего образования по математике (алгебре)

в 8 классе

Муниципального бюджетного общеобразовательного

учреждения средней общеобразовательной школы

с.Вазерки им. В.М.Покровского

Составитель:

учитель математики Бараева С.М.



с. Вазерки 2014 г.



ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Рабочая программа по математике (алгебре) для 8 класса составлена на основе образовательной программы по математике основного общего образования МБОУ СОШ с. Вазерки им. В.М. Покровского.


Цели и задачи рабочей программы:

Изучение математики на ступени основного общего образова­ния направлено на достижение следующих целей:

овладение системой математических знаний и умений, необ­ходимых для применения в практической деятельности, изу­чения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современ­ном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуи­ции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.


Целью изучения курса алгебры в 8 классе является развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.

Курс характеризуется повышением теоретического уровня обучения, постепенным усилением роли теоретических обобщений и дедуктивных заключений. Прикладная направленность курса обеспечивается систематическим обращением к примерам, раскрывающим возможности применения математики к изучению действительности и решению практических задач.


Место предмета в учебном плане МБОУ СОШ с. Вазерки им.В.М.Покровского

В соответствии с учебным планом МБОУ СОШ с. Вазерки им. В.М. Покровского на изучение данного курса выделено 4 часа в неделю в 1-м полугодии и 3 часа в неделю во 2-м полугодии, 119 часов в год. На изучение темы «Элементы статистики» выделяется 4 часов. В курсе повторения отводятся 10 часов на итоговое повторение и решение задач повышенной сложности.


Формы обучения и контроля: традиционные уроки, контрольная работа, проверочная работа, лекция, тестовая работа, лабораторная работа, практическая работа, творческая работа, практикум по решению задач, зачёт.

Представленная программа выполняет две основные функции.

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся 8 класса средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.


Содержание тем учебного курса

1. Повторение курса алгебры 7 класса.

2. Рациональные дроби.

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = k/х и её график.

Основная цель - выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умение выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоёмкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции у = k/х.


3. Квадратные корни.

Понятие об иррациональном числе. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция , её свойства и график.

Основная цель - систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том. Что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры. Так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция у = , её свойства и график. При изучении функции у = показывается её взаимосвязь с функцией у = х, где х0.

4. Квадратные уравнения.

Квадратное уравнение. Формулы корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным и рациональным уравнениям.

Основная цель - выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида где а≠0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

5. Неравенства.

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Основная цель - ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляет ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить обработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких которые записаны в виде двойных неравенств.

6. Степень с целым показателем.

Степень с целым показателем и ее свойства. Стандартный вид числа. Запись приближенных значений. Действия над приближенными значениями. Начальные сведения об организации статистических исследований.

Основная цель - выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Даётся понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий. Как полигон и гистограмма.

7. Элементы статистики.

Основная цель - сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

8. Повторение. Решение задач повышенной трудности.

Тематическое планирование по алгебре в 8 классе

по учебнику: авт. Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова

п/п

Содержание

Кол-во часов

(119)

Уроки вводного повторения

2


I. Рациональные дроби (26ч.)




1

Рациональные дроби и их свойства

5


2

Сумма и разность дробей

7



Контрольная работа №1

1


3

Произведение и частное дробей

6


4

Преобразование рациональных выражений

3


5

Функция у = к/х и ее график

2


6

Решение упражнений по теме

1



Контрольная работа №2

1


II. Квадратные корни (24ч.)




1

Действительные числа

3


2

Арифметический квадратный корень

6


3

Свойства арифметического квадратного корня

4



Контрольная работа №3

1


4

Применение свойств арифметического квадратного корня

9



Контрольная работа №4

1


III. Квадратные уравнения (24ч.)




1

Квадратные уравнения и его корни

11



Контрольная работа №5

1


2

Дробно-рациональные уравнения

11



Контрольная работа №6

1


IV. Неравенства (20ч.)




1

Числовые неравенства и их свойства

8



Контрольная работа №7

1


2

Неравенства с одной переменной и их системы

10



Контрольная работа №8

1


V. Степень с целым показателем. Элементы статистики (13ч.)




1

Степень с целым показателем и ее свойства

8



Контрольная работа №9

1


2

Сбор и группировка статистических данных

2


3

Наглядное представление статистической информации

2


VII. Повторение (10ч.)




1

Повторение всех разделов курса

8



Контрольная работа №10

2



Итого: 119 часов

Требования к уровню подготовки обучающихся

В результате изучения математики (алгебры) учащиеся 8 класса должны:

знать/понимать

существо понятия математического доказательства; примеры доказательств;

существо понятия алгоритма; примеры алгоритмов;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

как потребности практики привели математическую науку к необходимости расширения понятия числа;

вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое;

выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители;

применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

жписывать свойства изученных функций, строить их графики;

уметь извлекать информацию, представленную в таблицах, на диаграммах, графиках;

уметь составлять таблицы; уметь строить диаграммы, графики, гистограммы, полигоны;

уметь вычислять средние значения результатов измерений;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами.

уметь использовать приобретенные знания и умения в практической деятельности и повседневной жизни для анализа реальных числовых данных, представленных в виде диаграмм, гистограмм, графиков, таблиц;

понимать различные статистические утверждения.

Учебно методическое обеспечение

Учебный комплект для учащихся:

  1. Макарычев и др. Алгебра. Учебник для 8 класса общеобразовательных учреждений.- М., Просвещение, 2013.


Методические пособия для учителя:

  1. Программа для общеобразовательных учреждений. Математика. Министерство образования Российской Федерации.

  2. Ершова А.П. и др. Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса. - Москва - Харьков, Илекса, 2013.

  3. Ковалева Г.И. Уроки математики в 8 классе. Поурочные планы. - Волгоград, Учитель, 2012.

  4. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. - М.: Просвещение, 2013..

  5. В.И. Жохов, Г.Д. Карташева, Л.Б. Крайнева «Примерное планирование учебного материала и контрольные работы по математике 5 - 9 кл.», издательство «Вербум - М», 2011 год

  6. М.А. Максимовская. Тесты. Математика (5-11 кл.). М.:ООО «Агенство «КРПА «Олимп»: ООО «Издательство АСТ», 2012.

  7. П.И. Алтынов. Тесты. Алгебра 7-9 классы. М., Издательский дом «Дрофа», 2011.

  8. Л.И. Звавич, Л.Я. Шляпочкин. Контрольные и проверочные работы по алгебре. 7-9 классы. Москва. Издательский дом «Дрофа», 2012.

8




 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал