7


  • Учителю
  • Рабочая программа по математике 10-11 классы

Рабочая программа по математике 10-11 классы

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала



Муниципальное общеобразовательное казённое учреждение

Малиновская средняя общеобразовательная школа

Бурейского района Амурской области



Рассмотрено и рекомендовано Утверждено

к утверждению на заседании Директор МОКУ Малиновской СОШ

методического совета ____________ В. Н. Реснянский

МОКУ Малиновской СОШ приказ №___ от «___»______20__ г.

протокол № _________

от «____»__________20____ г.











РАБОЧАЯ ПРОГРАММА

учебного курса «Математика»

10-11 класс

Базовый уровень



на 2015 - 2016 учебный год



















Составила Буценко А. Г.

учитель математики

МОКУ Малиновской СОШ















РАБОЧАЯ ПРОГРАММА

ДЛЯ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

(Базовый уровень)



Пояснительная записка





Цель:

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.



Задачи:

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Начала математического анализа», «Параллельность и перпендикулярность в пространстве», « Векторы и метод координат в пространстве», «Многогранники и тела вращения». В рамках указанных содержательных линий решаются следующие задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

  • знакомство с основными идеями и методами математического анализа;



Реализация программы обеспечивается нормативными документами:

Реализация программы обеспечивается нормативными документами:

  • Федеральным компонентом государственных образовательных стандартов начального , основного, среднего (полного) общего образования, утверждёнными приказом министерства образования РФ от 05.03.2004;

  • Приказа Министерства образования и науки Российской Федерации от 19.12.2012 г. №1067 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию»;

  • Федеральный базисный учебный план и примерные учебные планы для общеобразовательных учреждений РФ, реализующих программы общего образования, утверждённый приказом МО РФ от 09.03.2004 №1312(с изменениями приказ Минобрнауки РФ от 03.06.2011 год №1994, от 01.02.2012 г. №74);

  • Приказ Министерства образования и науки Амурской области «Об утверждении примерного положения о структуре, порядке разработки и утверждении рабочих программ учебных курсов, предметов, дисциплин (модулей) общеобразовательными учреждениями, расположенными на территории Амурской области и реализующими программы общего образования» от 15.09.2010 г. № 1439;

  • Учебный план МОКУ Малиновской СОШ.



Рабочая программа по «Математике» 10 - 11 классов составлена на основе примерной программы основного общего образования: «Алгебра» 10-11 классы и «Геометрия» 10-11 классы (базовый уровень) и соответствует Федеральному компоненту государственного образовательного стандарта среднего (полного) общего образования.

Выбор примерной программы мотивирован тем, что она:

- соответствует стандарту среднего (полного) общего образования - построена с учётом принципов системности, научности, доступности и преемственности;

- способствует развитию коммуникативной компетенции учащихся;

- обеспечивает условия для реализации практической направленности, учитывает возрастную психологию учащихся;

- сохраняя единое образовательное пространство, предоставляет широкие возможности для реализации.



Место предмета в учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени среднего (полного) общего образования отводится 4 ч в неделю 10 и 11 классах. Из них на алгебру и начала анализа по 2 часа в неделю или 70 часов в 10 классе и 68 часов в 11 классе.

Из школьного компонента учебного плана школы добавлено по 2 часа в неделю в 10 и 11 классах на изучение предмета «Алгебра и начала математического анализа». Данные часы добавлены с целью углубленного изучения математики, решения нестандартных задач, таких которые требуют творческого применения знаний, а также для подготовки сдачи ЕГЭ.

210 часов в 10 классе и 204 часа в 11 классе (6 ч в неделю). Алгебра - 4 часа в неделю, геометрия - 2 часа.

В 10 классе - 140 часов (алгебра), 70 часов (геометрия).

В 11 классе - 136 часов (алгебра), 68 часов (геометрия).

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Формы организации образовательного процесса - уроки - практикумы по решению задач, уроки - лекции, урок - контроль знаний по теме, урок - зачёт, нетрадиционные уроки.









Технологии обучения:

  • Традиционная технология. Обучаемому, отводится роль, для которой характерны исполнительские функции репродуктивного характера. Действия учителя связаны с объяснением, показом действий, оценкой их выполнения учащимися и корректировкой.

  • Технология разноуровневого обучения. Данная технология предусматривает уровневую дифференциацию за счёт деления потоков на подвижные и относительно гомогенные по составу группы, каждая из которых овладевает программным материалом в различных образовательных областях на базовом и вариативном уровне.

  • Игровая технология. Понятие «игровые» педагогические технологии включают обширную группу методов и приёмов организации педагогического процесса в форме различных педагогических игр.



Рабочая программа предусматривает выработку следующих компетенций:

  • общеобразовательных:

- умения самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки до получения и оценки результата);

- умения использовать элементы причинно-следственного и структурно-функционального анализа, определять сущностные характеристики изучаемого объекта, развернуто обосновывать суждения, давать определения, приводить доказательства;

- умения использовать мультимедийные ресурсы и компьютерные технологии для обработки и презентации результатов познавательной и практической деятельности;

- умения оценивать и корректировать свое поведение в окружающей среде, выполнять экологические требования в практической деятельности и повседневной жизни.

  • предметно-ориентированных:

- развивать представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развивать вычислительную культуру;

- овладевать символическим языком математики, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

- изучать свойства и графики элементарных функций, научиться использовать функционально графические представления для описания и анализа реальных событий;

- развивать пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

- развивать логическое мышление и речь - умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.



Формы промежуточной и итоговой аттестации - контрольные работы и тестирование.









ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ СРЕДНЕГО ОБЩЕГО

ОБРАЗОВАНИЯ ПО МАТЕМАТИКЕ



АЛГЕБРА

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем1. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.

Арксинус, арккосинус, арктангенс числа.

ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, ее свойства и график.

Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Показательная функция (экспонента), ее свойства и график.

Логарифмическая функция, ее свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.

Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

Геометрия

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

  • соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; раз­личать и анализировать взаимное расположение фигур;

  • решать геометрические задачи, опираясь на изученные свой­ства планиметрических и стереометрических фигур и отноше­ний между ними, применяя алгебраический и тригонометри­ческий аппарат;

  • проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;

  • вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей простран­ственных тел и их простейших комбинаций;

  • применять координатно-векторный метод для вычисления отношений, расстояний и углов;

  • строить сечения многогранников;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.







Учебники:

  1. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. - М.: Просвещение, 2004.

  2. Геометрия, 10-11: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2004.























СОДЕРЖАНИЕ ОБРАЗОВАНИЯ



АЛГЕБРА И НАЧАЛА АНАЛИЗА

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения и неравенства. Арксинус, арккосинус, арктангенс числа.



ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, её свойства и график.

Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Показательная функция (экспонента), её свойства и график.

Логарифмическая функция, её свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой Рабочая программа по математике 10-11 классы, растяжение и сжатие вдоль осей координат.



НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.

Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.

Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.



УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных и тригонометрических уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.









Темы учебного курса 10 класса

  • Тригонометрические функции числового аргумента.

  • Основные тригонометрические формулы

  • Формулы сложения и их следствия

  • Основные свойства функций

  • Решение тригонометрических уравнений и неравенств

  • Производная

  • Применение непрерывности и производной

  • Применения производной к исследованию функции

  • Итоговое повторение



Темы учебного курса 11 класса

  • Повторение курса алгебры и начал анализа 10 класса

  • Первообразная

  • Интеграл

  • Обобщение понятия степени

  • Показательная и логарифмическая функции

  • Производная показательной и логарифмической функций

  • Итоговое повторение курса алгебры и начал анализа



ГЕОМЕТРИЯ

Прямые и плоскости в пространстве.

Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающие­ся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники.

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения.

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.





Объемы тел и площади их поверхностей.

Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы.

Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы.











СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА



Математика 10 класс



Алгебра и начала анализ



Тригонометрические функции любого угла (8 часов.)

Цели: ввести понятие синуса, косинуса, тангенса и котангенса произвольного угла. Рассмотреть их свойства. Научить учащихся совершать переход от радианной меры углов к градусной и наоборот.

Основные тригонометрические формулы (12 часов)

Цель: Усвоить формулы выражающие соответствие между тригонометрическими функциями одного и того же аргумента и учить применять их к нахождению значений тригонометрических функций по заданному значению одного из них. Рассмотреть формулы приведения.

Формулы сложения и их следствия (9 часов)

Цель: вывести формулы сложения и следствия из них.

Тригонометрические функции числового аргумента (6 часов).

Цель: Изучить свойства тригонометрических функций и познакомить с их графиками.

Основные свойства функций (16 часов)

Цель: сведения о функциях и их графиков добавить новыми понятиями: экстремумы, периодичность. Систематизировать в виде общей схемы исследования функций. Рассмотреть вопрос о преобразовании графиков, тем самым расширить возможности учащихся при построении графиков.

Решение тригонометрических уравнений и неравенств (19 часов)

Цель: Сформировать у учащихся умение решать простейшие тригонометрические уравнения и неравенства. Познакомить с основными приёмами решения тригонометрических уравнений.

Производная (19 часов)

Цель: Сформировать понятие о производной. Выработать умение находить производные, пользуясь правилами и формулами дифференцирования.







Применение непрерывности и производной (14 часов)

Цель: Познакомить учащихся с методами дифференциального исчисления. Сформировать умение применять их для решения задач. Изучить метод интервалов для решения неравенств. Ввести уравнение касательной.

Применение производной к исследованию функций (20 часов)

Цель: Усвоить в чём заключается геометрический и физический смысл производной.

Повторение (17 часов)

Цель: Решение задач по пройденному материалу. Подготовка к итоговому контролю.



Геометрия

1. Введение (аксиомы стереометрии и их следствия) (3 ч).

Представление раздела геометрии - стереометрии. Основные понятия стереометрии. Аксиомы стереометрии и их следствия. Многогранники: куб, параллелепипед, прямоугольный параллелепипед, призма, прямая призма, правильная призма, пирамида, правильная пирамида. Моделирование многогранников из разверток и с помощью геометрического конструктора.

Цель: ознакомить учащихся с основными свойствами и способами задания плоскости на базе групп аксиом стереометрии и их следствий.

О с н о в н а я ц е л ь - сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников.

Особенностью учебника является раннее введение основных пространственных фигур, в том числе, многогранников. Даются несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.

2. Параллельность прямых и плоскостей (19 ч).

Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признаки параллельности двух прямых в пространстве.

Цель: дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве.

О с н о в н а я ц е л ь - сформировать представления учащихся о понятии параллельности и о взаимном расположении прямых и плоскостей в пространстве, систематически изучить свойства параллельных прямых и плоскостей, познакомить с понятиями вектора, параллельного переноса, параллельного проектирования и научить изображать пространственные фигуры на плоскости в параллельной проекции.

В данной теме обобщаются известные из планиметрии сведения о параллельных прямых. Большую помощь при иллюстрации свойств параллельности и при решении задач могут оказать модели многогранников.

Здесь же учащиеся знакомятся с методом изображения пространственных фигур, основанном на параллельном проектировании, получают необходимые практические навыки по изображению пространственных фигур на плоскости. Для углубленного изучения могут служить задачи на построение сечений многогранников плоскостью.

3. Перпендикулярность прямых и плоскостей (16 ч).

Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями.

Цель: дать учащимся систематические знания о перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями.

О с н о в н а я ц е л ь - сформировать представления учащихся о понятиях перпендикулярности прямых и плоскостей в пространстве, систематически изучить свойства перпендикулярных прямых и плоскостей, познакомить с понятием центрального проектирования и научить изображать пространственные фигуры на плоскости в центральной проекции.

В данной теме обобщаются известные из планиметрии сведения о перпендикулярных прямых. Большую помощь при иллюстрации свойств перпендикулярности и при решении задач могут оказать модели многогранников.

В качестве дополнительного материала учащиеся знакомятся с методом изображения пространственных фигур, основанном на центральном проектировании. Они узнают, что центральное проектирование используется не только в геометрии, но и в живописи, фотографии и т.д., что восприятие человеком окружающих предметов посредством зрения осуществляется по законам центрального проектирования. Учащиеся получают необходимые практические навыки по изображению пространственных фигур на плоскости в центральной проекции.

4. Многогранники (16 ч).

Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники.

Цель: сформировать у учащихся представление об основных видах многогранников и их свойствах; рассмотреть правильные многогранники.

О с н о в н а я ц е л ь - познакомить учащихся с понятиями многогранного угла и выпуклого многогранника, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках, показать проявления многогранников в природе в виде кристаллов.

Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Теорема Эйлера о числе вершин, ребер и граней выпуклого многогранника играет важную роль в различных областях математики и ее приложениях. При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.

5.Векторы в пространстве (11 ч).

Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Параллельное проектирование и его свойства. Параллельные проекции плоских фигур. Изображение пространственных фигур на плоскости. Сечения многогранников. Исторические сведения.

Цель: сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами.

6.Повторение (5ч).

Цель: повторить и обобщить материал, изученный в 10 классе.





















Математика 11 класс



Алгебра и начала анализ

Повторение (3 часа)

Цели: повторить и обобщить основные знания правил вычисления производных и навыки нахождения производных тригонометрических функций, сложных функций; повторить геометрический, физический смысл производной функции, применение производной к исследованию функций.

Первообразная (7часов)

Цели: познакомить учащихся с интег­рированием как операцией, обратной дифференцированию; научить использовать свойства и правила при нахождении первообразных различных функций

Формирование представлений о понятии первообразной.

Овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур.

Интеграл (9 часов)

Цели: научить учащихся применять первообразную для вычисления площа­дей криволинейных трапеций (формула Ньютона-Лейбница)

Формирование представлений о понятии неопределенного интеграла, определенного интеграла.

Овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур.

Обобщение понятия степени (13 часов)

Цели: познакомить учащихся с понятия корня n-й степени и степени с рациональным по­казателем, которые являются обобщением понятий квадратного корня и степени с целым показателем. Следует обратить внимание учащихся на то, что рассматриваемые здесь свойства корней и сте­пеней с рациональным показателем аналогичны тем свойст­вам, которыми обладают изученные ранее квадратные корни и степени с целыми показателями. Необходимо уделить доста­точно времени отработке свойств степеней и формированию навыков тождественных преобразований.

Формирование представлений корня n-ой степени из действительного числа, функции Рабочая программа по математике 10-11 классы и графика этой функции.

Овладение умением извлечения корня, построения графика функции Рабочая программа по математике 10-11 классы и определения свойств функции Рабочая программа по математике 10-11 классы.

Овладение навыками упрощение выражений, содержащих радикал, применяя свойства корня n-й степени.

Обобщить и систематизировать знания учащихся о степенной функции, о свойствах и графиках степенной функции в зависимости от значений оснований и показателей степени.

Показательная и логарифмическая функция (26 часов)

Цели: познакомить учащихся с показа­тельной, логарифмической и степенной функциями; изучение свойств показательной, логарифмической и степенной функций построить в соответствии с принятой общей схемой исследования функций. При этом обзор свойств давать в зависимости от значений параметров. Показательные и логарифмические уравнения и неравенства решать с опорой на изученные свойства функций.

Формирование представлений о показательной и логарифмической функциях, их графиках и свойствах.

Овладение умением понимать и читать свойства и графики логарифмической функции, решать логарифмические уравнения и неравенства.

Овладение умением понимать и читать свойства и графики показательной функции, решать показательные уравнения и неравенства.

Создание условий для развития умения применять функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных предметах.

Производная показательной и логарифмической функции (20 часов)

Цели: познакомить учащихся с производной показательной и логарифмической функций, сформировать у учащихся навыки вычисления производной показательной и логарифмической функции, через решение различных типов заданий. Вывод формулы производной показательной функции провести на наглядно-интуитивной основе. При рассмот­рении вопроса о дифференциальном уравнении показатель­ного роста и показательного убывания показательная функ­ция должна выступать как математическая модель, находящая широкое применение при изучении реальных процессов и явлений действительности.

Итоговое повторение (24 часов)

Цели: повторить и обобщить навыки решения основных типов задач по следующим темам: преобразование тригонометрических, степенных, показательных и логарифмических выражений; тригонометрические функции, функция y=Рабочая программа по математике 10-11 классы, показательная функция, логарифмическая функция; производная; первообразная; различные виды уравнений и неравенств. Подготовка к ЕГЭ.

Обобщение и систематизация курс алгебры и начала анализа за 11 класса.

Создание условий для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность.

Формирование представлений об идеях и методах математики, о математике, как средстве моделирования явлений и процессов.

Овладение устным и письменным математическим языком, математическим знаниями и умениями.

Развитее логического и математического мышления, интуиции, творческих способностей.

Воспитание понимания значимости математики для общественного прогресса.



Геометрия

1. Координаты точки и координаты векторов пространстве. Движения (16 ч).

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач.

Цели: сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать анало­гию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осоз­нанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геомет­рии

О с н о в н а я ц е л ь - обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.







2.Цилиндр, конус, шар (18 ч)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Цель: выработка у учащихся систематических сведений об основных видах тел вращения.

Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометриче­ских тел. В ходе знакомства с теоретическим материалом темы зна­чительно развиваются пространственные представления уча­щихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круг­лых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет про­должить работу по формированию логических и графических умений.

О с н о в н а я ц е л ь - сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.

3. Объем и площадь поверхности (24 ч).

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Цель: систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Цели: продолжить систематическое изу­чение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Понятие объема вводить по анало­гии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,

так как вопрос об объемах принадлежит, по существу, к труд­ным разделам высшей математики. Поэтому нужные результа­ты устанавливать, руководствуясь больше наглядными со­ображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

О с н о в н а я ц е л ь - сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.

Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.







Повторение (10 ч.)

Цель: повторение и систематизация материала 11 класса.

Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения





Учебно - тематическое планирование 10 класс



Алгебра

Геометрия

Литература

  1. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. - М.: Просвещение, 2011.

  2. Дидактические материалы по алгебре и началам анализа для 10 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. - М.: Просвещение, 2003.

  3. Задачи по алгебре и началам анализа: Пособие для учащихся 10-11 кл. общеобразоват. учреждений /С.М. Саакян, А.М. Гольдман, Д.В. Денисов. - М.: Просвещение, 2003.

  4. Научно-теоретический и методический журнал «Математика в школе».

  5. Еженедельное учебно-методическое приложение к газете «Первое сентября». Математика.

  6. Геометрия, 10-11: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2002.

  7. Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 10 кл. - М.: Просвещение, 2001.

  8. Ковалева Г.И, Мазурова Н.И. геометрия. 10-11 классы: тесты для текущего и обобщающего контроля. - Волгоград: Учитель, 2006.









Учебно - тематическое планирование 11 класс



Алгебра

















ГеометрияАлгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. - М.: Просвещение, 2011.

.Дидактические материалы по алгебре и началам анализа для 11 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. - М.: Просвещение, 2003.

Задачи по алгебре и началам анализа: Пособие для учащихся 10-11 кл. общеобразоват. учреждений /С.М. Саакян, А.М. Гольдман, Д.В. Денисов. - М.: Просвещение, 2003.

Научно-теоретический и методический журнал «Математика в школе».

Еженедельное учебно-методическое приложение к газете «Первое сентября». Математика.

Единый государственный экзамен 2011. Математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.: Интеллект-Центр, 2010.

Геометрия, 10-11: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2004.

Ковалева Г.И, Мазурова Н.И. Геометрия. 10-11 классы: тесты для текущего и обобщающего контроля. - Волгоград: Учитель, 2006.

1</





 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал