7


  • Учителю
  • Календарно-тематическое планирование по геометрии 8 класс

Календарно-тематическое планирование по геометрии 8 класс

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала










Рабочая программа

по геометрии

для 8 класса

2 часа в неделю,

68 часов за год

учебник «Геометрия - 7 - 9»

под редакцией Атанасяна Л. С.



















Пояснительная записка

Рабочая программа составлена с учётом примерной программы основного общего образования по математике и скорректирована на её основе программа: «Геометрия 7-9» авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Геометрия - один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Программа направлена на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Программой отводится на изучение геометрии по 2 урока в неделю, что составляет 68 часов в учебный год. Из них контрольных работ 6 часов, которые распределены по разделам следующим образом: «Четырехугольники» 1 час, «Площадь» 1 час, «Подобие треугольников» 2 часа, «Окружность» 1 час и 1 час отведен на итоговую контрольную работу.

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Количество часов по темам изменено в связи со сложностью тем.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде контрольной работы.

Домашнее задание описано на блок уроков. По ходу работы, в зависимости от темпа прохождение материала номера заданий распределяются по урокам так, что по окончании изучения блока все задания выполнены учащимися в обязательном порядке.

Требования к уровню подготовки учащихся.

В результате изучения курса геометрии 8-го класса учащиеся должны уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве.


Сокращения, используемые в рабочей программе:

Типы уроков:

УОНМ - урок ознакомления с новым материалом.

УЗИМ - урок закрепления изученного материала.

УПЗУ - урок применения знаний и умений.

УОСЗ - урок обобщения и систематизации знаний.

УПКЗУ - урок проверки и коррекции знаний и умений.

КУ - комбинированный урок.

Виды контроля:

ФО - фронтальный опрос.

ИРД - индивидуальная работа у доски.

ИРК - индивидуальная работа по карточкам.

СР - самостоятельная работа.

ПР - проверочная работа.

МД - математический диктант.

Т - тестовая работа.

Календарно-тематическое планирование

Наименование раздела программы

Тема урока

Кол-во часов

Элементы содержания образования

Требования к уровню подготовки обучающихся

Дата проведения урока

план

факт

I

Четырех-

угольники.


14

1-2

Многоугольники.

2

многоугольник, элементы многоугольника, выпуклый многоугольник, сумма углов выпуклого многоугольника

-уметь строить выпуклый многоугольник;

-знать формулу суммы углов выпуклого многоугольника

3-8

Параллелограмм. Свойства параллелограмма.

2

четырехугольник, параллелограмм, свойства параллелограмма

-уметь доказывать свойства параллелограмма;

-уметь решать задачи

Признаки параллелограмма.

2

параллелограмм, свойства параллелограмма, признаки параллелограмма

-уметь доказывать признаки параллелограмма;

-уметь решать задачи

Трапеция.

2

трапеция, элементы трапеции, равнобедренная и прямоугольная трапеция

-знать, что называют трапецией;

-уметь решать задачи на доказательство

9-12

Прямоугольник.

1

прямоугольник, свойства прямоугольника, признак прямоугольника

-уметь доказывать теоремы и свойства прямоугольника;

-уметь решать задачи на их применение;

Ромб и квадрат.

2

ромб, квадрат, свойство ромба и квадрата

-уметь доказывать свойства ромба и квадрата;

-уметь решать задачи

Осевая и центральная симметрии.

1

осевая и центральная симметрии, ось симметрии, центр симметрии

-уметь строить симметричные точки;

-уметь распознавать фигуры, обладающие осевой и центральной симметрией

13

Решение задач.

1

параллелограмм, трапеция, прямоугольник, ромб, квадрат, осевая и центральная симметрии

-уметь решать задачи, опираясь на изученные свойства

14

Контрольная работа №1

1


-уметь применять все изученные свойства, признаки и теоремы в комплексе;

-уметь доказательно решать задачи

II

Площадь


14

15-16

Площадь многоугольника.

2

единицы измерения площадей, площадь прямоугольника, основные свойства площадей

-уметь вывести формулу площади прямоугольника;

-уметь решать задачи на применение формулы

17-22


Площадь параллелограмма.

2

параллелограмм, основание и высота параллелограмма, площадь параллелограмма

-знать формулу площади параллелограмма;

-уметь выводить формулу площади параллелограмма

Площадь треугольника.

2

треугольник, основание и высота, площадь треугольника, соотношение площадей

-знать формулу площади треугольника;

-уметь находить площадь прямоугольного треугольника;

- уметь находить площадь треугольника в случае, если равны их высоты или угол

Площадь трапеции.

2

трапеция, высота трапеции, площадь трапеции

-знать и уметь доказывать формулу вычисления площади трапеции;

-уметь решать задачи на применение формулы

23-25

Теорема Пифагора.

3

прямоугольный треугольник, теорема Пифагора, теорема, обратная теореме Пифагора

-уметь доказывать теорему Пифагора;

-уметь решать задачи на нахождение гипотенузы или катета в прямоугольном треугольнике

26-27

Решение задач.

2

площадь параллелограмма, треугольника, трапеции, теорема Пифагора

-уметь находить площадь параллелограмма, треугольника, трапеции по формулам;

-уметь применять теорему Пифагора при решении задач

28

Контрольная работа №2.

1


-уметь применять полученные знания в комплексе

III

Подобные треугольники


19

29-30

Определение подобных треугольников.

2

пропорциональные отрезки, сходственные стороны, подобные треугольники, коэффициент подобия, отношение площадей

-уметь определять подобные треугольники;

-уметь доказывать теорему об отношении площадей подобных треугольников

31-35

Первый признак подобия треугольников.

2

подобие треугольников, первый признак подобия

-уметь доказывать первый признак подобия треугольников;

-уметь применять признак при решении задач

Второй признак подобия треугольников.

2

подобие треугольников, второй признак подобия

-уметь доказывать второй признак подобия треугольников;

-уметь применять признак при решении задач

Третий признак подобия треугольников.

1

подобие треугольников, третий признак подобия

-уметь доказывать третий признак подобия треугольников;

-уметь применять признак при решении задач

36


Контрольная работа №3.

1


-уметь применять первый, второй, третий признаки в комплексе при решении задач

37-43

Средняя линия треугольника.

3

теорема о средней линии треугольника

-уметь определять среднюю линию треугольника;

-уметь доказывать теорему о средней линии треугольника;

уметь решать задачи, используя теорему о средней линии треугольника

Пропорциональные отрезки в прямоугольном треугольнике.

2

среднее пропорциональное, утверждения о среднем пропорциональном

-уметь использовать утверждения о пропорциональных отрезках в прямоугольном треугольнике при решении задач

Практические приложения подобия треугольников.

2

метод подобия, построение треугольника по данным двум углам и биссектрисе при вершине третьего угла

-уметь решать задачи на построение методом подобия;

-применять подобия к доказательству теорем и решению задач

44-46

Синус, косинус и тангенс острого угла прямоугольного треугольника.

1

синус, косинус и тангенс острого угла прямоугольного треугольника, основное тригонометрическое тождество

-уметь определять синус, косинус и тангенс острого угла прямоугольного треугольника;

-знать основное тригонометрическое тождество

Значение синуса, косинуса и тангенса для углов 300, 450, 600.

2

таблица значений

-знать таблицу значений синуса, косинуса и тангенса для углов 300, 450, 600

47

Контрольная работа №4.

1


-уметь применять подобия к доказательству теорем и решению задач;

-уметь решать задачи, используя соотношения между сторонами и углами прямоугольного треугольника

IV

Окружность.


17

48-50

Взаимное расположение прямой и окружности.

1

окружность, радиус и диаметр окружности, секущая, расстояние от точки до прямой,

-знать все взаимные расположения прямой и окружности;

-уметь находить расстояние от точки до прямой

Касательная к окружности.

2

касательная к окружности, точка касания

-уметь доказывать свойство и признак касательной;

-уметь определять касательную к окружности;

-уметь проводить через данную точку окружности касательную к этой окружности

-уметь решать задачи

51-54


Центральный угол.

2

дуга, полуокружность, градусная мера дуги окружности, центральный угол

-уметь определять градусную меру центрального угла;


Вписанный угол.

2

вписанный угол, теорема о вписанном угле

-уметь определять вписанный угол;

-доказывать теорему о вписанном угле и следствия к ней;

-знать в каком отношении пересекаются хорды окружности

55-57

Четыре замечательные точки треугольника.

3

свойства биссектрисы угла и серединного перпендикуляра, теорема о пересечении высот треугольника, замечательные точки треугольника

-уметь доказывать указанные теоремы;

-уметь решать задачи на применение этих теорем

58-61

Вписанная окружность.

2

вписанная окружность, описанный многоугольник, теорема о вписанной окружности

-уметь вписывать окружность в многоугольник;

-уметь доказывать теорему о вписанной окружности и свойства;

Описанная окружность.

2

описанная окружность, вписанный многоугольник, теорема об описанной окружности, теорема о сумме противоположных углов вписанного многоугольника

-уметь описывать окружность около многоугольника;

-уметь доказывать теорему об описанной окружности и замечания;

-знать, чему равна сумма противоположных углов вписанного многоугольника

62-63

Решение задач.

2

касательная к окружности, центральный угол, вписанный угол, замечательные точки треугольника, вписанная и описанная окружность

-уметь определять градусную меру центрального и вписанного угла;

-уметь решать задачи с использованием замечательных точек треугольника;

-знать, чему равна сумма противоположных углов вписанного многоугольника

64

Контрольная работа №5.

1


-уметь применять полученные знания в комплексе


Итоговое повторение курса геометрии 8 класса


4

65-67

Решение задач.

3

четырехугольники, площадь многоугольника, подобные треугольники, окружность

-уметь находить площадь многоугольника по формулам;

-знать свойства вписанной и описанной окружности

68

Итоговая административная контрольная работа.

1


-уметь применять все полученные знания за курс геометрии 8 класса

Литература:

  1. Артюнян Е. Б., Волович М. Б., Глазков Ю. А., Левитас Г. Г. Математические диктанты для 5-9 классов. - М.: Просвещение, 1991.

  2. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия 7-9. - М.: Просвещение, 2006.

  3. Буланова Л. М., Дудницын Ю. П. Проверочные задания по математике для учащихся 5-8 и 10 классов. - М.: Просвещение, 1998.

  4. Зив Б. Г., Мейлер В. М. Дидактические материалы по геометрии за 8 класс. - М.: Просвещение, 2005.

  5. Иченская М. А. Самостоятельные и контрольные работы к учебнику Л. С. Атанасяна 7-9 классы. - Волгоград: Учитель, 2006.


6



 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал