- Учителю
- Рабочая программа фк гос 7 кл алгебра
Рабочая программа фк гос 7 кл алгебра
Пояснительная записка
I. Рабочая программа по алгебре для 7 класса составлена на основе:
-Федерального Закона «Об образовании РФ» от 26.12.2012 года № 273-ФЗ (ст. 2,47,48),
-Федеральный компонента государственный образовательный стандарт 2004 года (в ред. Приказов Минобрнауки РФ от 03.06.2008 № 164, от 31.08.2009 № 320, от 19.10.2009 № 427),
- постановления Главного государственного санитарного врача РФ от 29.12 2010 №189 «Об утверждении СанПин 2.4.2.2821-10 «Санитарно- эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях,
с учётом
-основной образовательной программы основного общего образования муниципального общеобразовательного учреждения средняя общеобразовательная школа п.г.т.Новокручининский
- авторской программы А. Г. Мордковича «Алгебра 7 - 9» под редакцией И.И.Зубаревой, А.Г.Мордковича, издательство М.: Мнемозина, 2009.
Общая характеристика учебного предмета.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
В ходе освоения содержания курса учащиеся получают возможность:
-
сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
-
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
-
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
-
развить логическое мышление и речь - умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
-
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
В ходе преподавания алгебры в 7 классах, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
-
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
-
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
-
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
-
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
-
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
-
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Место предмета в базисном учебном плане
Продолжительность учебного года в МОУ СОШ №2 составляет 34 недели (приказ УО муниципального района «Читинский район» от …. .08.2015. на основании этого приказа составлен протокол засения педагогического совета от ___.08.2015.
На изучение алгебры в 7 классе отводится 102 часа из расчета 3 ч в неделю. Из них
- на повторение 3 часа в начале, 4 часа в конце учебного года
-контрольные работы -8ч
-резерв 18 ч
-на изучение новой темы- 85 ч
Глава
часы
2
Числовые и алгебраические выражения
6
3
Линейная функция
11
4
Системы двух линейных уравнений с двумя переменными
13
5
Степень с натуральным показателем и её свойства
6
6
Одночлены. Арифметические операции над одночленами
8
7
Многочлены. Арифметические операции над многочленами
15
8
Разложение многочленов на множители
18
9
Функция у=х2 и её график
8
1
Элементы логики, комбинаторики, статистики и теории вероятности
6
1
Повторение
4
Резерв
18
Итого
102
Роль предмета в формировании общеучебных умений и ключевых компетенций учащихся
Математическое образование играет важную роль, как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная - с интеллектуальным развитием человека, формированием характера и общей культуры.
Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения - от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.
Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач - основной учебной деятельности на уроках математики - развиваются творческая и прикладная стороны мышления.
Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
Межпредметные связи.
Математика, неоспоримо, является фундаментальной наукой и имеет
широкое применение в самых различных областях науки и техники.
Среди школьных предметов она является базой для предметов
естественного цикла. Такие темы, как действия с обыкновенными и
десятичными дробями, степени, формулы, функции, масштаб, уравнения
широко применяются при решении практических задач физики, химии,
биологии, географии, астрономии, информатики, экономики
Предметы естественно-математического цикла дают учащимся знания о
живой и неживой природе, о материальном единстве мира, о природных
ресурсах и их использовании в хозяйственной деятельности
человека.
Общие учебно-воспитательные задачи этих предметов направлены на
всестороннее гармоничное развитие личности. Важнейшим условием
решения этих общих задач является осуществление и развитие
межпредметных связей предметов, согласованной работы
учителей-предметников.
Изучение всех предметов естественнонаучного цикла тесно связано с
математикой. Она дает учащимся систему знаний и умений, необходимых
в повседневной жизни и трудовой деятельности человека, а также
важных для изучения смежных предметов. На основе знаний по
математике в первую очередь формируются общепредметные
расчетно-измерительные умения. Преемственные связи с курсами
естественнонаучного цикла раскрывают практическое применение
математических умений и навыков. Это способствует формированию у
учащихся целостного, научного мировоззрения.
Особенности организации учебного процесса
Важную роль в учебном процессе играют формы организации обучения или виды обучения, в качестве которых выступают устойчивые способы организации педагогического процесса. Основной формой организации учебно-воспитательной работы с учащимися в школе является урок ( урок ознакомления с новым материалом, урок закрепления изученного, урок применения знаний и умений, урок обобщения и систематизации знаний, урок проверки и коррекции знаний и умений, комбинированный урок) , однако, начиная с 7 класса, могут быть использованы и другие формы обучения. Применение разнообразных, нестандартных форм обучения должно в первую очередь соответствовать интеллектуальному уровню развития обучающихся и их психологическим особенностям.
К нестандартным формам обучения математики в
школе относятся: лекции, семинары, консультации, экскурсии,
конференции, практикумы, деловые игры, дидактические игры,
уроки-зачеты, работа в группах.
Не менее важны и формы контроля знаний, умений, навыков (текущий
контроль, диагностический, рубежный, итоговый). Формы такого
контроля также различны. Это могут быть и контрольные работы, и
самостоятельные домашние работы, и защита рефератов и проектов, и
переводные экзамены, и индивидуальное собеседование,
диагностические работы, а также комплексное собеседование и защита
темы. Для развития у учащихся интереса к изучаемому предмету и,
как следствие, повышения качества знаний используются современные
инновационные технологии такие, как:
-
Технология уровневой дифференциации обучения
-
Технология проблемно-развивающего обучения
-
Здоровье-сберегающие технологии
-
Технологии сотрудничества
-
Игровые технологии
Возрастные и психологические особенности учащихся, характеристика класса:
Средний школьный возраст - переход от детства к юности. У школьника подростка этот переход связан с включением
его в доступные ему формы общественной жизни. Вместе с тем меняется и реальное место, которое ребенок занимает в
повседневной жизни окружающих его взрослых, в жизни своей семьи. Теперь его физический силы, его знания и
умения ставят его в некоторых случаях на равную ступень с взрослыми, а кое в чём он даже чувствует своё
преимущество. Продолжается развитие нервной системы, мыслительной деятельности. Мировоззрение, нравственные
идеалы, система оценочных суждений, моральные принципы, которыми школьник руководствуется в своем поведении,
еще не приобрели устойчивость, их легко разрушают мнения товарищей, противоречия жизни. Правильно
организованному воспитанию принадлежит решающая роль. В зависимости от того, какой нравственный опыт
приобретает подросток, будет складываться его личность.
В программе используются педагогические технологии: технологии на основе активизации и интенсификации
деятельности учащихся (игровые технологии); технологии на основе активизации и интенсификации деятельности
учащихся (системы развивающего обучения с направленностью на развитие творческих качеств личности); технологиина основе эффективности управления и организации учебного процесса (технология уровневой дифференциации
обучения на основе обязательных результатов).
Методы :
методы организации и осуществления учебно-познавательной деятельности: словесный (диалог, рассказ и др.);
наглядный (опорные схемы, слайды и др.); практический (упражнения, практические работы, решение
задач, моделирование и др.); исследовательский; самостоятельной работы; работы под руководством преподавателя;
дидактическая игра;
методы стимулирования и мотивации: интереса к учению; долга и ответственности в учении;
методы контроля и самоконтроля в обучении: фронтальная устная проверка, индивидуальный устный опрос,
письменный контроль (контрольные и практические работы, тестирование, письменный зачет, тесты).
Формы текущего и итогового контроля: самостоятельная работа, тестирование, теоретические диктанты.
Календарно-тематическое планирование по математике 7 класс А.Г. Мордкович и (102 часов)
уро ка
Наименование разделов и тем
Кол-во
часов
Тип урока
Вид
занятия
Характеристи-ка деятельнос-ти учащихся
Планируемый результат
Дата ( по плану)
Дата (по факту)
примечания
1
Числовые и алгебраические выражения.
1
Комбинированный урок
Определение числового и буквенного выражений. Свойства действий. Допустимые значения переменных.
Знать:
- определение числового и буквенного выражения
- знать свойства действий над числами;
- знать алгоритм решения линейного уравнения;
Уметь:
- вычислять числовые значения буквенных выражений;
- находить допустимые значения переменных;
- выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений;
- составлять буквенные выражения по заданным условиям;
- выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений;
- решать линейные уравнения;
- переходить от аналитической модели неравенства к геометрической и наоборот
1.09
2
Решение задач по теме: «Числовые и алгебраические выражения».
1
Урок-решение задач
2.09
3
Решение задач по теме: «Числовые и алгебраические выражения».
1
Урок-решение задач
5.09
4
Допустимые значение переменных
1
Комбинированный урок
Запись утверждений
7.09
5
Подстановка значений вместо переменных
1
Комбинированный урок
8.09
6
Тождества
Преобразование выражений
1
Урок-решение задач
9.09
7
Линейное уравнение с одной переменной.
1
Комбинированный урок
Определение линейного уравнения с одной переменной. Алгоритм решения такого уравнения.
12.09
8
Решение задач по теме: «Линейное уравнение с одной переменной».
1
Урок-решение задач
13.09
9
Координатная прямая.
1
Комбинированный урок
Знакомство с элементами математического языка, которые связаны с координатной прямой.
15.09
10
Решение задач по теме: «Координатная прямая».
1
Урок-решение задач
16.09
11
Решение задач по теме:
« Числовые и алгебраические выражения»
Подготовка к контрольной работе
1
Урок обобщения и системати-зации знаний
Числовые и алгебраические выражения.
Математическое
моделирование
19.09
12
</<font face="Calibri, serif">Контрольная работа №1 по теме: «Числовые и алгебраические выражение».
1
Урок - контрольная работа
Числовые и алгебраические выражения.
Математическое
моделирование
Уметь выполнять преоб-разования с числовыми и алгебраическими выражениями.
20.09
13
Анализ контрольной работы
Координатная плоскость.
1
Комбинированный урок
Прямоугольная система коорди-нат. Алгоритм нахождения координат точки и отыскании точки по её координатам
Знать:
- алгоритм отыскания координат точки;
- алгоритм построения точки;
- вид линейной функции;
- свойства линейной функции;
- о параллельности и пересечении графиков;
Уметь:
- определять, является ли пара чисел решением данного уравнения с двумя переменными;
- приводить примеры решений уравнений с двумя переменными;
- строить график линейной функции;
- строить графики уравнений с двумя переменными;
- строить график функции прямой пропорциональности;
- по графику находить значения x и y;
- описывать свойства линейной функции по графику.
21.09
14
Решение задач по теме: «Координатная плоскость».
1
Урок решения задач
22.09
15
Линейное уравнение с двумя
переменными и его график.
1
Комбинированный урок
Графическая интерпретация уравнения с двумя переменными. Алгоритм построения графика линей-ного уравнения ах+ву+с=о
23.09
16
Решение задач по теме: «Линейное уравнение с двумя
переменными и его график».
1
Урок решения задач
26.09
17
Самостоятельная работа по теме: «Линейное уравнение с двумя переменными и его график»
1
Урок -
самостоятельная работа
27.09
18
Линейная функция и его график.
1
Комбинированный урок
Определение линейной функ-ции, ее график и свойства. Наи-большее и наи-меньшее значе-ния функции. Возрастание и убывание
28.09
19
Решение задач по теме: «Линейная функция и её график».
1
Урок решения задач
29.09
20
Самостоятельная работа по теме: «Линейная функция и её график»
1
Урок решения задач
30.09
21
Линейная функция у = кх.
1
Комбинированный урок
Угловой коэффициент прямой. Прямо пропорциональ-ная зависимость.
3.10
22
Решение задач по теме: «Линейная функция
у = кх».
1
Урок решения задач
4.10
23
Взаимное расположение графиков линейных функций.
1
Комбинированный урок
Примеры взаимного расположения графиков линейных функций в зависимости от углового коэффициента.
5.10
24
Решение задач по теме: «Взаимное расположение графиков линейных функций».
1
Урок решения задач
6.10
25
Решение задач по теме: «Линейная функция».
Подготовка к контрольной работе
1
Урок обобщения и систематизации
знаний
7.10
26
Контрольная работа №2 по теме: «Линейная функция».
1
Урок - контрольная работа
Сокращение алгебраических дробей, линей-ное уравнение, линейная функ-ция, их графики
Уметь сокращать алгебра-ические дроби, строить и читать графики линейного уравнения, линейной функции, прямой пропорциональности
10.10
27
Анализ контрольной работы
Системы двух линейных уравнений с двумя переменными.
Основные понятия.
1
Комбинированный урок
Определения системы уравнений, решения системы. Графический способ решения систем.
Знать:
- что такое система уравнений;
- алгоритм решения систем двух линейных уравнений способом подстановки;
- алгоритм решения систем двух линейных уравнений способом сложения.
Уметь:
- уметь решить систему линейных уравнений с двумя переменными любым способом;
- решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений, решать составленную систему уравнений, интерпретировать результат.
11.10
28
Графический метод решения систем уравнений.
1
Урок-решение задач
12.10
29
Метод подстановки.
1
Комбинированный урок
Метод подстановки Алгоритм решения систем уравнений методом подстановки.
13.10
30
Решение систем уравнений методом подстановки
1
Урок-решение задач
14.10
31
Решение систем уравнений методом подстановки.
1
Урок-решение задач
18.10
32
Метод алгебраического сложения.
1
Комбинированный урок
Алгоритм решения систем уравнений методом алгебраического сложения.
19.10
33
Решение систем уравнений методом алгебраического сложения.
1
Урок-решение задач
20.10
34
Самостоятельная работа по теме: «Метод алгебраичес-кого сложения».
1
Урок -
самостоятельная работа
21.10
35
Решений задач с помощью систем уравнений.
1
Урок решения задач
25.10
25.10
36
Решений задач с помощью систем уравнений.
1
Урок -самостоятельная работа
26.10
37
Решение задач по теме: «Системы двух линейных уравнений с двумя переменными».
1
Урок обобщения и систематизации
знаний
27.10
38
Контрольная работа №3 по теме: «Системы двух линейных уравнений с двумя переменными».
1
Урок - контрольная работа
Системы двух линейных урав-нений с двумя переменными, методы решения
Уметь решать системы линейных уравнений различными методами
28.10
39
Степень с натуральным показателем.
1
Комбинированный урок
Определение степени с натуральным показателем. Примеры.
Знать:
- определение степени с натуральным показателем;
- свойства степени с натуральным показателем;
Уметь:
- формулировать, записывать в символической форме свойства степени с натуральным показателем;
- применять свойства степени для преобразования выражений и вычислений.
8.11
40
Таблица основных степеней.
1
Комбинированный урок
Таблица степеней.
9.11
41
Свойства степени с натуральными показателями.
1
Комбинированный урок
Определение, теорема, доказательство.
Т 1,2,3 свойства степени с натуральным
показателем
10.11
42
Решение задач по теме: «Свойства степени с нату-ральными показателями».
1
Урок решения задач
11.11
43
Умножение и деление степеней с одинаковыми показателями.
1
Комбинированный урок
Правила умножения и деления степеней с одинаковым основанием, возведение степени в степень.
15.11
44
Решение задач по теме: «Умножение и деление степеней с одинаковыми показателями».
1
Урок решения задач
16.11
45
Степень с нулевым показателем.
1
Комбинированный урок
Степень с нулевым показателем.
Вычислительные задания.
17.11
46
Решение задач по теме: «Степень с натуральным показателем и ее свойства»
1
Урок обобщения и систематизации
знаний
18.11
47
Контрольная работа №4 по теме: «Степень с натуральным показате-лем и ее свойства».
1
Урок - контрольная работа
Свойства степени с натуральным показателем
Уметь применять свойства степени с натуральным показателем
21.11
48
Понятие одночлена. Стандартный вид одночлена.
1
Комбинированный урок
Определение одночлена. Коэффициент одночлена. Стандартный вид одночлена. Алгоритм приведения одночлена к стандартному виду
Знать:
- понятие одночлена;
- понятие коэффициента одночлена;
- понятие подобных одночленов.
Уметь:
- записывать одночлен в стандартном виде;
- складывать, вычитать подобные одночлены;
- умножать и возводить в степень одночлены.
1.12
49
Решение задач по теме: «Стандартный вид одночлена».
1
Урок решения задач
2.12
50
Сложение и вычитание одночленов.
1
Комбинированный урок
Подобные одночлены.
Алгоритм сложения и вычитания
одночленов.
5.12
51
Решение задач по теме: «Сложение и вычитание одночленов».
1
Урок решения задач
6.12
52
Решение задач по теме: «Сложение и вычитание одночленов».
1
Урок -самостоятельная работа
7.12
53
Умножение одночленов. Возведение одночлена в натуральную степень
1
Комбинированный урок
Правила умножения
одночленов и возведения одночлена в степень
8.12
54
Решение задач по теме: «Умножение одночленов».
1
Урок решения задач
9.12
55
Деление одночлена на одночлен
1
Комбинированный урок
Правила деления одночлена на одночлен.
12.12
56
Решение задач по теме: «Деление одночлена на одночлен».
1
Урок решения задач
самостоятельная работа
13.12
57
Решение задач по теме: «Одночлены. Арифметические операции над одночленами».
Подготовка к контрольной работе
1
Урок обобщения и систематизации
знаний
Правила сложе-ния, вычитания одночленов, де-ление одночлена на одночлен
14.12
58
Контрольная работа №6 по теме: «Одночлены. Арифметические опера-ции над одночленами».
1
Урок - контрольная работа
Правила сложе-ния, вычитания одночленов, де-ление одночлена на одночлен
Уметь применять правила действий над одночлена-ми при упрощении выражений
15.12
59
Анализ контрольной работы
Многочлены. Основные понятия.
1
Комбинированный урок
Определение многочлена. Стандартный вид и степень многочлена. Приведение подобных членов многочлена
Знать:
- понятие многочлена;
Уметь:
-применять полученные знания при приведении многочлена к стандартному виду и приведении подобных членов;
-выполнять сложение и вычитание многочленов;
-преобразовывать произведение одночлена и многочлена в многочлен
стандартного вида и уметь
выносить за скобки одночленный множитель
- преобразовывать произведение любых двух многочленов в многочлен стандартного вида
19.01
Стандартный вид многочлена.
1
Урок решения задач
20.01
60
Сложение и вычитание многочленов
1
Комбинированный урок
Правило сложения и вычитания многочленов.
23.01
61
Закрепление знаний по теме: «Сложение и
вычитание многочленов».
1
Урок решения задач
24.01
62
Умножение многочлена на одночлен.
1
Комбинированный урок
Правило умножения многочлена на одночлен.
25.01
63
Решение задач по теме:
«Умножение многочлена на одночлен».
1
Урок решения задач
26.01
64
Решение задач по теме: «Умножение многочлена на одночлен».
1
Урок -самостоятельная работа
27.01
65
Умножение многочлена на многочлен.
1
Комбинированный урок
Правило умножения многочлена на многочлен.
30.01
66
Решение задач по теме:
«Умножение многочлена на многочлен».
1
Урок решения задач
31.01
67
Решение задач по теме: «Умножение многочлена на многочлен».
1
Урок -самостоятельная работа
1.02
68
Решение задач по теме: «Многочлены. Арифметические операции над многочленами».
1
Урок обобщения и систематизации
знаний
Правило сложе-ния, вычитания, умножения многочлена на одночлен и многочлена на многочлен
2.02
69
Контрольная работа №8 по теме: «Многочлены. Арифметические операции над многочленами».
1
Урок - контрольная работа
Правило сложе-ния, вычитания, умножения многочлена на одночлен и многочлена на многочлен
Уметь выполнять арифметические действия над многочленами
3.02
70
Формулы сокращенного
умножения. Квадрат суммы и квадрат разности.
1
Комбинированный урок
Квадрат суммы и разности.
Знать:
- формулы сокращенного
умножения, их словесную и буквенную формулировки
Уметь:
- применять формулы сокращенного умножения в преобразованиях выражений и вычислениях и при решении уравнений
6.02
71
Решение задач по теме: «Квадрат суммы и квадрат разности».
1
Урок-решение задач
7.02
72
Разность квадратов.
1
Комбинированный урок
Разность квадратов.
8.02
73
Решение задач по теме: «Разность квадратов»
1
Урок- самостоятельная работа
9.02
74
Реше ние задач по теме: «Разность квадратов»
1
Комбинированный урок
.
10.02
75
Решение задач по теме: ФСУ
1
Комбинированный урок
Правило деления многочлена на одночлен.
Уметь:
- производить деление многочлена на одночлен, если это возможно
13.02
76
Решение задач по теме: «Формулы сокращенного умножения»
1
Урок обобщения и систематизации
знаний
Формулы сокращенного умножения, деление многочлена на одночлен.
Уметь:
- применять формулы сок-ращенного умножения при преобразованиях вы-ражений, правило деления многочлена на одночлен.
14.02
77
Контрольная работа №9 по теме: «Формулы сокращенного умножения».
1
Урок - контрольная работа
Формулы сокращенного
умножения, деление многочлена на одночлен.
Уметь:
- применять формулы сокращенного умножения при преобразованиях вы-ражений, правило деления многочлена на одночлен.
15.02
78
Анализ контрольной работы
Что такое разложение многочленов на множители и зачем оно нужно.
1
Комбинированный урок
Понятие разложения многочленов на множители.
Знать:
- способы разложения многочленов на множители
Уметь:
- видеть практическую пользу при использовании разложения многочлена на множители: при решении уравнений , сокращении дробей, рац-ых вычис-й
-применять алгоритм вынесения общего множителя за скобки при решении уравнений
-применять способ группировки при разложении многочлена на множители
29.02
79
Вынесение общего множителя за скобки.
1
Комбинированный урок
Алгоритм вынесения общего множителя за скобки. Алгоритм отыскания общего множителя
1.03
80
Решение задач по теме: «Вынесение общего множителя за скобки».
1
Урок-решение задач
2.03
81
Решение задач по теме: вынесение общего множителя за скобки».
1
Урок -самостоятельная работа
5.03
82
Способ группировки.
1
Комбинированный урок
Разложение на множители способом группировки.
6.03
83
Решение задач по теме: «Способ группировки».
1
Урок решения задач
7.03
84
Решение задач по теме: «Способ группировки».
1
Урок -самостоятельная работа
8.03
85
Разложение многочленов на множители с помощью формул сокращенного умножения.
1
Комбинированный урок
Применение формул сокращенного умножения при разложении многочлена на множители
Уметь:
-применять формулы сокращенного умножения при разложении многочлена на множители
9.03
86
Решение задач по теме: «Разложение многочленов на множители с помощью формул сокращенного умножения».
1
Урок решения задач
12.03
87
Решение задач по теме: «Разложение многочленов на множители с помощью формул сокращенного умножения».
1
Урок решения задач
13.03
88
Самостоятельная работа по теме: «Разложение многочленов на множители с помощью формул сокращенного умножения».
1
Урок -самостоятельная работа
14.03
89
Решение задач по теме: «Разложение многочленов на множители с помощью формул сокращенного умножения».
1
Урок решения задач
15.03
90
Разложение многочленов на множители с помощью комбинации различных приемов.
1
Комбинированный урок
Комбинирован-ные примеры, связанные с разложением многочлена на множители. Метод выделе-ния полного квадрата.
Уметь:
-выполнять разложение многочлена на множители различными способами (в комбинации)
19.03
91
Решение задач по теме: «Разложение многочленов на множители с помощью комбинации различных приемов».
1
Урок решения задач
20.03
93
Самостоятельная работа по теме:«Разложение многочленов на множители с помощью комбинации различных приемов».
1
Урок -самостоятельная работа
21.03
94
Сокращение алгебраических дробей.
1
Комбинированный урок
Правило сокращения алгебраических дробей. Определение и примеры алгебраической дроби
Уметь:
- применять различные способы разложения многочлена на множители при сокращении алгебраических дробей
- пользоваться основными алгоритмическими приемами доказательства тождества
22.03
95
Решение задач по теме:
«Сокращение алгебраических дробей».
1
Урок решения задач
23.03
96
Функция у=х2 и ее график.
1
Комбинированный урок
Построение квадратичной функции. Парабола её элементы, функция у=х2
Знать:
- понятия: парабола, ветви параболы, вершина параболы, область определения функции.
Уметь:
- строить и читать график функции у=х2
8.05
97
Решение задач по теме: «Функция у=х2 и ее график».
1
Урок решения задач, самостоятельная работа
9.05
98
Графическое решение уравнений.
1
Комбинированный урок
Алгоритм графического решения уравнения.
Примеры решения уравнений графи-ческим способом.
Знать:
- алгоритм графического решения уравнений;
Уметь:
-решать уравнения графичес-ким способом
10.05
99
Решение задач по теме: «Графическое решение уравнений».
1
Урок решения задач
11.05
Что означает в математике запись
у=f(х)
1
Комбинированный урок
Понятие функции.
Смысл записи
у= f(х), кусочная функция, область определения функции, непрерывность функции
Знать:
-функциональную символику, читать графики
Уметь:
- строить график функции y=f(x);
- строить график кусочной функции;
- читать графики.
14.05
100
Решение задач по теме: «Что означает в математике запись
у=f(х)»
1
Урок решения задач, самостоятельная работа
15.05
101
Решение задач по теме: «Функция у=х2».
1
Урок обобщения и систематизации
знаний
Графическое решение урав-нений. Наиболь-шее и наимень-шее значения функции
Уметь:
- строить график функции;
- читать графики функций
16.05
Контрольная работа №14 по теме: «Функция у=х2».
1
Урок - контрольная работа
Сокращение дробей. Графи-ческое решение уравнений. Наи-большее и наи-меньшее значе-ния функции
Уметь сокращать дроби, уметь работать с графическими моделями
17.05
Повторение
Числовые и алгебраические выражения.
1
Урок решения задач
18.05
Графики функций.
1
Урок решения задач
21.05
Линейные уравнения и системы уравнений.
1
Урок решения задач
22.05
Многочлены.
1
Урок решения задач
23.05
Алгебраические дроби.
1
Урок решения задач
24.05
Решение уравнений.
1
Урок решения задач
25.05
Решение неравенств.
1
Урок решения задач
28.05
Решение задач.
Подготовка контрольной работе
1
Урок решения задач
29.05
Итоговая контрольная работа №15
2
Урок - контрольная работа
30.05
Анализ контрольной работы.
1
Урок решения задач
31.05
В течении года в программе по содержательным линиям возможна корректировка с учётом субъективных и объективных причин
Содержание учебного предмета
АЛГЕБРА
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений.
Многочлены. Сложение, вычитание, умножение многочленов. Многочлены с одной переменной. Степень многочлена. Корень многочлена.
Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители.
Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением.
Решение текстовых задач алгебраическим способом
Числовые функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции. Чтение графиков функций. Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов.
ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ,
СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
Доказательство. Определения, доказательства, аксиомы и теоремы; следствия. Необходимые и достаточные условия. Контрпример. Доказательство от противного. Прямая и обратная теоремы.
Понятие об аксиоматике и аксиоматическом построении геометрии. Пятый постулат Эвклида и его история
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧЕНИКА 7 КЛАССА
В результате изучения алгебры ученик должен
знать/понимать
как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
Алгебра
уметь
· составлять буквенные выражения и формулы по условиям задач;
· выполнять основные действия со степенями с натуральными показателями, с многочленами; выполнять разложение многочленов на множители;
· решать линейные уравнения, уравнения, сводящиеся к ним;
· решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
· изображать числа точками на координатной прямой;
· определять координаты точки плоскости, строить точки с заданными координатами;
· строить графики изученных зависимостей;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
· моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
· описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
· интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
· извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
· решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
· вычислять средние значения результатов измерений;
· находить частоту события, используя собственные наблюдения и готовые статистические данные;
· находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· распознавания логически некорректных рассуждений;
· анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
· решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
· решения учебных и практических задач, требующих систематического перебора вариантов;
· сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
· понимания статистических утверждений.
6. Учебно-методическое обеспечение
-
Алгебра. 7 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений/ А.Г. Мордкович. - 11-ое издание.,стер. - М.:Мнемозина, 2008.
-
Алгебра. 7 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений/ [А.Г. Мордкович и др.]: под ред. А.Г. Мордковича. - 11-ое изд., доп. - М.:Мнемозина, 2008
-
Концепция модернизации российского образования на период до 2010// «Вестник образования» -2002- № 6 - с.11-40.
-
Концепция математического образования (проект)//Математика в школе.- 2000. - № 2. - с.13-18.
-
Стандарт основного общего образования по математике//«Вестник образования» -2004 - № 12 - с.107-119.
-
Ткачева М.В., Федорова Н.Е. «Элементы статистики и вероятность». М., «Просвещение», 2007.
-
Контрольно-измерительные материалы. Алгебра: 7 класс/ сост. Л.И. Мартышова. - М.:ВАКО,2010.
-
Готовимся к ГИА. Алгебра. 7-й класс. Итоговое тестирование в формате экзамена/ авт.-сост. Л.П. Донец. - Ярославль: Академия развития, 2010.
-
Алгебра. Тесты для промежуточной аттестации. 7-8 класс. Издание третье, переработанное и дополненное. Под редакцией Ф.Ф. Лысенко. Ростов-на-Дону: Легион, 2008.
-
Алгебра. 7-9 классы. Тесты для учащихся общеобразовательных учреждений/А.Г. Мордкович, Е.Е. Тульчинская; под ред. А.Г. Мордковича.-8-е изд.,стер.-М: Мнемозина, 2009.
-
Алгебра. 7 класс. Контрольные работы для учащихся общеобразовательных учреждений/ Л.А. Александрова: под ред. А.Г. Мордковича. - 3-е изд., испр. и доп. - М.: Мнемозина, 2009.
-
Алгебра. 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений / Л.А. Александрова ; под ред. А.Г. Мордковича. -5-е изд.,стер. - М.:Мнемозина, 2009.