- Учителю
- Пояснительная к КТП 5 класс Никольский С.М.
Пояснительная к КТП 5 класс Никольский С.М.
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа № 149
РАССМОТРЕНО : СОГЛАСОВАНО: УТВЕРЖДАЮ:
Руководитель МО Заместитель директора Директор МБОУ СОШ № 149
____________________ Н.В.Макагон _____________С.Г. Власова ___________ Я.В.Гордиенко
«__»________________ 2015 г. «__»________________ 2015 г. «__»________________ 2015 г.
Рабочая программа
по математике 5-г, 5-д
учителя
Мочаловой Ирины Андреевны
на 2015 - 2016 учебный год
г. Екатеринбург, 2015
Пояснительная записка
Рабочая программа составлена на основе Федерального государственного образовательного стандарта основного общего образования, примерной программы основного общего образования по математике, федерального перечня учебников, рекомендованных или допущенных к использованию в образовательном процессе в образовательных учреждениях, базисного учебного плана, авторского тематического планирования учебного материала и требований к результатам общего образования, представленных в Федеральном образовательном государственном стандарте общего образования, с учетом преемственности с примерными программами для начального общего образования.
Данная рабочая программа ориентирована на использование учебника С.М. Никольского, М. К. Потапова и др.
Цель
Главной целью образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.
Это определило цели обучения математике:
-
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов; об идеях и методах математики;
-
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
-
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
-
воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики.
Основой целеполагания является обновление требований к уровню подготовки школьников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта - переход от суммы «предметных результатов» к «метапредметным результатам». Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования.
Дидактическая модель обучения и педагогические средства отражают модернизацию основ учебного процесса, их переориентацию на достижение конкретных результатов в виде сформированных умений и навыков учащихся, обобщенных способов деятельности. Формирование целостных представлений о математике будет осуществляться в ходе творческой деятельности учащихся на основе личностного осмысления математических фактов и явлений. Особое внимание уделяется познавательной активности учащихся, их мотивированности к самостоятельной учебной работе. Это предполагает все более широкое использование нетрадиционных форм уроков, в том числе методики деловых и ролевых игр, проблемных дискуссий, межпредметных интегрированных уроков и т. д.
На ступени основной школы задачи учебных занятий определены как закрепление умений! разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям. Принципиальное значение в рамках курса приобретает умение различать факты, мнения, доказательства, гипотезы, аксиомы.
При выполнении творческих работ формируется умение определять адекватные способы решения учебной задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения.
Учащиеся должны приобрести умения по формированию собственного алгоритма решения познавательных задач, формулировать проблему и цели своей работы, определять адекватные; способы и методы решения задачи, прогнозировать ожидаемый результат и сопоставлять его с собственными математическими знаниями. Учащиеся должны научиться представлять резуль-1 таты индивидуальной и групповой познавательной деятельности в формах конспекта, реферата, рецензии.
Реализация календарно-тематического плана обеспечивает освоение универсальных учебных I действий:
-
создание условий для развития умения логически обосновывать суждения, выдвигать гипо-1 тезы и понимать необходимость их проверки, ясно, точно и грамотно выражать свои мысли в устной и письменной речи;
-
формирование умений использовать различные языки математики, свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства, интегрирования в личный опыт новой, в том числе самостоятельно полученной, информации;
создание условий для плодотворного участия в работе группы; умений самостоятельно и мотивированно организовывать свою деятельность, использовать приобретенные знания и умения, в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач с использованием при необходимости справочников и вычислительных устройств.
На уроках учащиеся могут более уверенно овладеть монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника. признавать право на иное мнение), приводить примеры, подбирать аргументы, перефразировать мысль, формулировать выводы.
Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы (текст, таблица, схема, аудиовизуальный ряд и др.).
Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывание. монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается простейшее использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.
С учетом возрастных особенностей классов выстроена система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты). Требования к результатам обучения конкретизированы, даны в деятельной формулировке и в последовательности их изложения. Конкретно сформулированные требования позволяют спланировать виды учебной деятельности, что обеспечит усвоение учебного материала на уровне требований государственного стандарта. В планировании приведены примерные измерители достижения требований к уровню подготовки. Планируется использование новых педагогических технологиий в преподавании предмета.
В ходе освоения содержания курса учащиеся получают возможность:
-
развит в представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений; развит вычислительную культуру;
-
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их при решении математических и нематематических задач;
-
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
-
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
-
получить представление о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер,
-
развить логическое мышление и речь - умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
-
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Согласно Федеральному базисному учебному плану данная рабочая программа предусматривает в 5 классе обучение в объеме 175 часов, 5 часов в неделю.
В соответствии с этим реализуется типовая программа «Математика. 5 класс» для обще- образовательных учреждений (авторы С. М. Никольский, М. К. Потапов, II. Н. Решетников, А. В. Шевкин).
</ Требования к уровню подготовки учащихся 5 классов.
В результате освоения курса математики 5 класса учащиеся должны овладеть следующими знаниями, умениями и навыками.
Личностным результатом изучения предмета является формирование следующих умений и качеств:
-
представление о математической науке как сфере человеческой деятельности, о ее значимости в развитии цивилизации;
креативность мышления, инициатива, находчивость, активность при решении математических задач
Метапредметным результатом изучения курса является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
-
самостоятельно обнаруживать и формулировать учебную проблему, определять цель УД;
-
выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
-
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
-
работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки самостоятельно (в том числе и корректировать план);
-
в диалоге с учителем совершенствовать самостоятельно выбранные критерии оценки.
Познавательные УУД:
-
проводить наблюдение и эксперимент под руководством учителя;
-
осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
-
создавать и преобразовывать модели и схемы для решения задач;
-
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
-
анализировать, сравнивать, классифицировать и обобщать факты и явления;
-
давать определения понятиям.
Коммуникативные УУД:
- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т. д.);
-
в дискуссии уметь выдвинуть аргументы и контраргументы;
-
учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;
-
понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории);
-
уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Предметным результатом изучения курса является сформированность следующих умений.
Оценка результатов учебной деятельности учащихся по учебному предмету «Математика»
Поурочный контроль осуществляется в устной и письменной формах или в их сочетании посредством проведения опроса (индивидуального, группового, фронтального) с использованием контрольных вопросов и заданий, содержащихся в учебниках, учебных, учебно-методических пособиях и дидактических материалах, математических диктантов, собеседования, самостоятельных работ. Тематический контроль осуществляется посредством проведения самостоятельных и контрольных работ, зачетов.
Содержание учебного курса
В 5 классе рассматриваются следующие темы:
-
Повторение основных понятий математики из курса начальной школы (5 ч.)
Сложение и вычитание натуральных чисел, умножение и деление натуральных чисел, единицы измерения длины, массы, времени, площади и выполнение действий над ними, решение уравнений и решение простейших задач на движение и стоимость.
Цель - систематизировать, восстановить знания о натуральных числах, единицах измерения, уравнениях и задачах на движение и стоимость, полученные в ходе обучения в начальной школе.
-
Натуральные числа и нуль (55 ч).
Ряд натуральных чисел. Десятичная запись, сравнение, сложение и вычитание натуральных чисел. Законы сложения. Умножение, законы умножения. Степень с натуральным показателем Деление нацело, деление с остатком. Числовые выражения. Решение текстовых задач арифметическими методами.
Основные цели- систематизировать и обобщить сведения о натуральных числах, об их сравнении, сложении и вычитании, умножении и делении; добиться осознанного овладения приемами вычислений с применением законов сложения и умножения; развивать навыки вычислений с натуральными числами.
При изучении данной темы вычисления выполняются сначала устно с опорой на законы сложения и умножения, на свойство вычитания, а потом столбиком. Большое внимание уделяется переместительному и сочетательному законам умножения и распределительному закону, их использованию для обоснования вычислений столбиком (на простых примерах), для рационализации вычислений. Тем самым закладывается основа осознанного овладения приемами вычислений. Вместе с тем достаточное внимание уделяется закреплению навыков вычисления столбиком, особенно в сложных случаях (нули в записи множителей или частного). Вводится понятие степени с натуральным показателем. При изучении числовых выражений закрепляются правила порядка действий.
С первых уроков начинается систематическая работа по развитию у учащихся умения решать текстовые задачи арифметическими способами. Решение задач требует понимания отношений «больше на ...», «меньше на ...», «больше в ...», «меньше в ...» и их связи с арифметическими действиями с натуральными числами, а также понимания стандартных ситуаций, в которых используются слова «всего», «осталось» и т. п. Типовые задачи на части, на нахождение двух чисел по их сумме и разности рассматриваются в отдельных пунктах. Работа с арифметическими способами решения задач, нацеленная на развитие мышления и речи учащихся, продолжится при изучении следующих тем. При наличии учебных часов рассматривается тема «Вычисления с помощью калькулятора».
-
Измерение величин (36 ч).
Прямая, луч, отрезок. Измерение отрезков и метрические единицы длины. Представление натуральных чисел на координатном луче. Окружность и круг, сфера и шар. Углы, измерение углов. Треугольники и четырехугольники. Прямоугольный параллелепипед. Площадь прямоугольника, объем прямоугольного параллелепипеда. Единицы площади, объема, массы, времени. Решение текстовых задач арифметическими методами.
Основные цели- систематизировать знания учащихся о геометрических фигурах и единицах измерения величин; продолжить их ознакомление с геометрическими фигурами и с соответствующей терминологией.
При изучении данной темы учащиеся измеряют отрезки, изображают натуральные числа на координатном луче. Это начальный этап освоения ими идеи числа как длины отрезка, точнее - как координаты точки на координатной прямой. Здесь же они вычисляют площадь прямоугольника и объем прямоугольного параллелепипеда, измерения которых - натуральные числа.
Здесь вводятся единицы измерения длины, площади и объема, устанавливаются соотношения между единицами длины, единицами площади, единицами объема, изучаются единицы массы и времени.
Введение градусной меры угла сопровождается заданиями на измерение углов и построение углов с заданной градусной мерой.
При изучении данной темы решаются задачи на движение.
При наличии учебных часов рассматривается тема «Многоугольники».
3. Делимость натуральных чисел (23 ч).
Свойства и признаки делимости. Простые и составные числа. Делители т Наибольший общий делитель, наименьшее общее кратное.
Основные цели- завершить изучение натуральных чисел рассмотрением свойств и признаков делимости; сформировать у учащихся простейшие доказательные умения.
При изучении данной темы значительное внимание уделяется формированию у учащих доказательных умений. Доказательства свойств и признаков делимости проводятся на характерных числовых примерах, но методы доказательства могут быть распространены на общий случай. При этом учащиеся получают первый опыт доказательства теоретических положений с ссылкой на другие теоретические положения.
Понятия наибольшего общего делителя и наименьшего общего кратного вводятся традиционно, но следует учесть, что в дальнейшем не всегда требуется сокращать дробь на наибольший общий делитель ее числителя и знаменателя или приводить дроби обязательно к наименьшему общему знаменателю.
При наличии учебных часов рассматривается тема «Использование четности при решении задач».
4. Обыкновенные дроби (56 ч).
Понятие дроби, равенство дробей (основное свойство дроби). Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей. Законы сложения. Умножение дробей, законы умножения. Деление дробей. Смешанные дроби и действия с ними. Представление ,дробей на координатном луче. Решение текстовых задач арифметическими методами.
Основная цель - сформировать у учащихся умения сравнивать, складывать, вычитать, умножать и делить обыкновенные и смешанные дроби, вычислять значения выражений, содержащих обыкновенные и смешанные дроби, решать задачи на сложение и вычитание, на умножение и деление дробей, задачи на дроби, на совместную работу арифметическими методами.
Формирование понятия «дроби» сопровождается обучением решению простейших задач на нахождение части числа и числа по его части, а также задач, готовящих учащихся к решению задач на совместную работу. При вычислениях с дробями допускается сокращение дроби на любой общий делитель ее числителя и знаменателя (не обязательно наибольший), а также приведение дробей к любому общему знаменателю (не обязательно наименьшему). Но в том и о другом случаях разъясняется, когда вычисления будут наиболее экономными.
При изучении данной темы решаются задачи на сложение и вычитание дробей, основные задачи на дроби.
Операция умножения дробей вводится по определению, из которого, получается правило умножения натурального числа на обыкновенную дробь. Особое внимание уделяется доказательствам законов сложения и умножения дробей. Они проводятся на характерных числовых примерах с опорой на соответствующие законы для натуральных чисел, но методы доказательства могут быть распространены на общий случай.
Деление дробей вводится как операция, обратная умножению. Смешанная дробь рассматривается
как другая запись обыкновенной неправильной дроби. Отдельно изучаются вычисления со смешанными дробями. На характерных числовых примерах показывается, что площадь прямоугольника и объем прямоугольного параллелепипеда, измерения которых выражены рациональными числами, вычисляются по тем же правилам, что и для натуральных чисел.
Работу с неотрицательными рациональными числами завершает, их изображение на координатном луче.
Здесь решаются задачи на умножение и деление дробей, показывается, что рассмотренные ранее задачи на дроби можно решать с помощью умножения и деления. Задачи на совместную работу выделены в отдельный пункт.
Критерии оценки достижений учащихся.
Оценка письменных контрольных работ обучающихся по математике.
-
Ответ оценивается отметкой «5», если:
-
работа выполнена полностью;
-
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
-
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
-
Отметка «4» ставится в следующих случаях:
-
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
-
допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
-
Отметка «3» ставится, если:
-
допущено более одной ошибки или более двух - трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
-
Отметка «2» ставится, если:
-
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Оценка устных ответов обучающихся по математике
-
Ответ оценивается отметкой «5», если ученик:
-
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
-
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
-
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
-
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
-
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
-
отвечал самостоятельно, без наводящих вопросов учителя;
-
возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
-
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
-
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
-
допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
-
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
-
Отметка «3» ставится в следующих случаях:
-
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
-
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
-
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
-
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
-
Отметка «2» ставится в следующих случаях:
-
не раскрыто основное содержание учебного материала;
-
обнаружено незнание учеником большей или наиболее важной части учебного материала;
-
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Общая классификация ошибок.
-
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
Грубыми считаются ошибки:
-
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
-
незнание наименований единиц измерения;
-
неумение выделить в ответе главное;
-
неумение применять знания, алгоритмы для решения задач;
-
неумение делать выводы и обобщения;
-
неумение читать и строить графики;
-
неумение пользоваться первоисточниками, учебником и справочниками;
-
потеря корня или сохранение постороннего корня;
-
отбрасывание без объяснений одного из них;
-
равнозначные им ошибки;
-
вычислительные ошибки, если они не являются опиской;
-
логические ошибки.
К негрубым ошибкам следует отнести:
-
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
-
неточность графика;
-
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
-
нерациональные методы работы со справочной и другой литературой;
-
неумение решать задачи, выполнять задания в общем виде.
Недочетами являются:
-
нерациональные приемы вычислений и преобразований;
-
небрежное выполнение записей, чертежей, схем, графиков.
Список литературы
-
Математика. 5 класс : учеб, для общеобразоват.организаций
М34 с прил. на электрон, носителе / [С. М. Никольский, М. К. Попов, Н. Н. Решетников, А. В. Шевкин]. - 13-е изд. - М. : Просвещение, 2014. - 272 с.: ил. - (МГУ - школе). - ISBN 978-5-09-033036-7.
2.Математика. Дидактические материалы. 5 класс : учебю пособие для общеобразоват. организаций / М. К. Потапов, А. В. Шевкин. - 12-е изд. - М. : Просвещение, 2015. - 96 с. : ил. - (МГУ - школе). ISBN 978-5-09-035234-5.
Предполагается использование следующих программно-педагогических средств, реализуемых с помощью компьютера:
-
1С: Репетитор. Математика (КиМ) (СО).
-
1С: Математика. 5-11 классы. Практикум (2 СD).
Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих интернет-ресурсов:
-
Министерство образования и науки РФ. - Режим доступа www.mon.gov.ru
-
Тестирование on-line: 5-11 классы. - Режим доступа www.kokch.kts.ru/cdo
-
Путеводитель «В мире науки» для школьников. Режим доступа www.uic.ssu.samara.ru/nauka
-
Мегаэнциклопедия Кирилла и Мефодия. Режим доступа www.mega.km.ru
-
Сайт энциклопедий. - Режим доступа www.encyclopedia.ru