- Учителю
- Конспект урока в 10 классе Количественный подход к измерению информации
Конспект урока в 10 классе Количественный подход к измерению информации
2. Объяснение нового материала (сопровождается презентацией - ):
Введение понятия "количество информации"
- Можно ли измерить количество вещества и как именно?
- Можно ли определить количество энергии?
- Можно ли измерить количество информации и как это сделать? (правильного ответа на этот вопрос учащиеся не дадут).
Оказывается, то информацию также можно измерять и находить ее количество. Об этом мы и поговорим с вами на уроке.
Существуют два подхода к измерению информации. Один из них называется содержательный или вероятностный.
Количество информации, заключенное в сообщении, определяется объемом знаний, который несет это сообщение человеку. Этот подход субъективный (зависит от конкретного человека). Разные люди, получившие одно и то же сообщение, по-разному оценивают количество информации, содержащееся в нем. Это происходит от того, что знания людей о событиях, о которых идет речь в сообщении, различны
Пример. Первоклассник изучает таблицу умножения. Учитель сообщает ему, что 2 х 2 = 4. Первоклассник этого раньше не знал, поэтому такое сообщение содержит для него информацию. А для ученика 5 класса таблица умножения хорошо известна, поэтому из такого сообщения информацию он не получит.
Рассмотрим примеры.
Допустим, вы бросаете монету, загадывая, что выпадет: орел или решка? Есть всего два варианта возможного результата бросания монеты. Причем, ни один из этих вариантов не имеет преимущества перед другим. В таком случае говорят, что они равновероятны.
Так вот, в этом случае перед подбрасыванием монеты неопределенность знаний о результате равна двум. Игральный кубик с шестью гранями может с равной вероятностью упасть на любую из них. Значит, неопределенность знаний о результате бросания кубика равна шести.
Следовательно, можно сказать так: неопределенность знаний - это количество возможных результатов события (бросания монеты, кубика; вытаскивания жребия и пр.)
Пример:
На экзамен приготовлено 20 билетов.
-
Чему равно количество событий, которые могут произойти при вытягивании билета? (20)
-
Равновероятны эти события или нет? (да)
-
Чему равна неопределенность знаний ученика перед тем как он вытянет билет? (20)
-
Во сколько раз уменьшится неопределенность знания после того как ученик билет вытянул? (20)
-
Зависит ли этот показатель от номера вытянутого билета? (нет)
Вернемся к примеру с монетой. Предположим, что у монеты обе стороны "орел".
-
Существует ли неопределенность знаний перед броском в этом случае? Почему? (нет, заранее знаем, что выпадет "орел")
-
Получите вы новую информацию после броска? (нет, ответ знаем заранее)
-
Будет ли информативным сообщение о результате броска? (не будет, поскольку оно не принесло новых и полезных знаний)
-
Чему равно количество информации в этом случае? (нулю, так как данное сообщение является неинформативным)
Информация при данном подходе рассматривается как знание для человека.
За единицу измерения информации принимается уменьшение неопределенности знаний человека в 2 раза.
Эта единица называется битом и является минимальной единицей информации.
Игра "Угадай число".
Один из учеников загадывает число из интервала от 1 до 16. Учитель задает вопросы, ученик на них отвечает, и весь класс вместе с учителем заполняют следующую таблицу:
Вопрос
Ответ
Неопределенность знаний
Полученное количество информации
Число больше 8?
Да
8
1 бит
Число больше 12?
Да
4
1 бит
Число больше 14?
Нет
2
1 бит
Число 13?
Да
1
1 бит
4 бита
Работа в парах:
Один из учеников загадывает число в интервале от 1 до 8, второй - отгадывает это число, пользуясь приведенной выше стратегией игры.
Учитель сам объявляет количество полученных бит информации - 3, а затем спрашивает у учащихся их результат.
Существует формула, которая связывает между собой количество возможных событий и количество информации.
N = 2I, где
N - количество возможных вариантов,
I - количество информации.
Если из этой формулы выразить количество информации, то получится I= log2N.
Неравновероятные события.
В жизни же мы сталкиваемся не только с равновероятными событиями, но и событиями, которые имеют разную вероятность реализации.
Например:
1. Когда сообщают прогноз погоды, то сведения о том, что будет дождь, более вероятно летом, а сообщение о снеге - зимой.
2. Если вы - лучший ученик в классе, то вероятность сообщения о том, что за контрольную работу вы получили 5, больше, чем вероятность получения двойки.
3. Если в мешке лежат 20 белых шаров и 5 черных, то вероятность достать черный шар меньше, чем вероятность вытаскивания белого.
Как вычислить количество информации в таком сообщении?
Для этого необходимо использовать следующую формулу:
I = , где р - вероятность отдельного события.
Это формула Хартли.
3. Решение задач
1. В корзине лежат 8 мячей разного цвета (красный, синий, желтый, зеленый, оранжевый, фиолетовый, белый, коричневый). Какое количество информации несет в себе сообщение о том, что из корзины будет вынут мяч красного цвета?
Решение.
Так как возможности вынуть мяч каждого из возможных цветов равновероятны, то для определения количества информации, содержащегося в сообщении о выпадении мяча красного цвета, воспользуемся формулой I= log2N.
Имеем I= log28= 3 бита.
Ответ: 3 бита.
2. В корзине лежат 8 черных шаров и 24 белых. Сколько информации несет сообщение о том, что достали черный шар?
Решение:
8+24=32 - общее количество шаров в корзине;
8/32 = 0,25 - вероятность того, что из корзины достали черный шар;
I= - log2 0,25 = - (-2) = 2 бита.
Ответ: 2 бита
3. В корзине лежат 32 клубка шерсти. Среди них - 4 красных. Сколько информации несет сообщение о том, что достали клубок красной шерсти?
Решение:
4/32 = 1/8 - вероятность того, что из корзины достали клубок красной шерсти;
I= - log2 (1/8) = - (-3) = 3 бита.
Ответ: 3 бита
4. В коробке лежат 64 цветных карандаша. Сообщение о том, что достали белый карандаш, несет 4 бита информации. Сколько белых карандашей было в коробке?
Решение:
Пусть в коробке было х белых карандашей.
Вероятность того, что достали белый карандаш, равна - х/64.
Количество информации сообщения о том, что достали белый шар, равно I= - log2 (х/64) бит, что по условию задачи составляет 4 бита, т.е. имеет место уравнение:
Значит, в коробке было 4 белых карандаша.
Ответ: 4 карандаша
5. В корзине лежат белые и черные шары. Среди них 18 черных шаров. Сообщение о том, что из корзины достали белый шар, несет 2 бита информации. Сколько всего в корзине шаров.
Решение:
Пусть в корзине - х белых шаров
Тогда всего шаров - (х + 18).
Вероятность того, что достали белый шар равна - .
Количество информации сообщения о том, что достали белый шар, равно
I= - log2 бит, что по условию задачи составляет 2 бита, т.е. имеет место уравнение:
В корзине было 6 белых шаров.
Следовательно, всего в корзине - (6+18)=24 шара
Ответ: 24 шара.
4. Подведение итогов урока: оценка работы класса и учащихся, отличившихся на уроке.
5.Домашнее задание
1. В ящике лежат 36 красных и несколько зеленых яблок. Сообщение "Из ящика достали зеленое яблоко" несет 2 бита информации. Сколько яблок в ящике?
2. В концертном зале 270 девушек и несколько юношей. Сообщение "Первым из зала выйдет юноша" содержит 4 бита информации. Сколько юношей в зале.
3. В корзине 15 яблок, 15 груш и 30 слив. Сколько бит информации несет сообщение о том, что из корзины извлечена груша?
4. В коробке лежат 16 разноцветных фломастеров. Какое количество информации содержит сообщение, что из коробки достали фиолетовый фломастер?