7


  • Учителю
  • Рабочая программа по ФГОС по физике 7 класс

Рабочая программа по ФГОС по физике 7 класс

Автор публикации:
Дата публикации:
Краткое описание:
предварительный просмотр материала

МКОУ средняя общеобразовательная школа №2

р.п. Новая Майна

РАССМОТРЕНО:

СОГЛАСОВАНО:

УТВЕРЖДЕНО:

На заседании кафедры

учителей

Протокол

№___от __________2015

Зав.каф.__________


На заседании НМС



Протокол №____от________2015



ЗД по УВР

___________________

Приказом директора школы

№________от_________2015



Директор школы

_______________________



Рабочая программа по

физике

___7__ класс

Уровень: базовый

Количество часов:

___2___ в неделю

___70___ в год



Учебник:Н.С.Пурышева_Н.Е.Важеевская 2015________

Учитель:МадивановаС.П.___________________________

Категория:высшая_________________________________

Образование:высшее_______________________________

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная программа составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам обучения, представленных в Стандарте основного общего образования.

Рабочая программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития воспитания и социализации учащихся.

Программа разработана на основании следующих нормативных документов:

1. Федеральный государственный образовательный стандарт основного общего образования/ М-во образования и науки Рос.Федерации. - М.: Просвещение, 2011.- 48 с.- (Стандарты второго поколения).

2. Примерные программы по учебным предметам. Физика 7-9 классы. Стандарт основного общего образования/ М-во образования и науки Рос.Федерации. - М.: Просвещение, 2011.- 48 с.- (Стандарты второго поколения).

3. Приказ № 253 от 31 марта 2014 г. Об утверждении федерального перечня учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования.

4. Требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного образовательного стандарта (приказ Министерства образования и науки от 04.10.2010 № 986).

5. Учебный план ОУ.

2. Цели и задачи физики в основной школе

Цели изучения физики в основной школе следующие:

  • развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;

  • понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;

  • формирование у учащихся представлений о физической картине мира;

  • организация экологического мышления и ценностного отношения к природе;

  • развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний и выбора физики как профильного предмета.

Для успешного достижения целей курса физики необходимо решить следующие задачи:

  • знакомство учащихся с методом научного познания и метода исследования объектов и явлений природы;

  • приобретение учащимися знаний о механических, световых явлениях, физических величинах, характеризующие эти явления;

  • формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования;

  • овладение учащимися такими общенаучными понятиями, как природные явления, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки.


3. ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА ФИЗИКИ 7 КЛАССА


Школьный курс физики- системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.

В содержание программы включен материал, на основе изучения которого учащиеся овладевают методами изучения природы - теоретическим и экспериментальным. В курсе физики 7 класса изучаются следующие темы: механические, звуковые и световые явления. Для овладения теоретическим методом организуется работа с обобщенными планами изучения физических понятий - физических явлений, физических величин, физических приборов, законов и теорий. Овладению экспериментальным методом познания способствуют специальные занятия по выполнению экспериментальных заданий, на основе которых формируются практические умения: проводить наблюдения, планировать и выполнять простейшие эксперименты, измерять физические величины, делать выводы на основе экспериментальных данных.

Для практических занятий используются вариативные методы: в зависимости от учебных возможностей учащихся применяются репродуктивные экспериментальные задания (по инструкции, описанию) и задания исследовательского характера.

Учебный материал внутри каждого из разделов концентрируем в темы вокруг ведущих дидактических единиц содержания, выстраивается в строгой логической последовательности.

По каждой теме указываются экспериментальные задания, лабораторные работы на основе которых формируются практические умения: проводить наблюдения, планировать и выполнять простейшие эксперименты, измерять физические величины, делать выводы на основе экспериментальных данных.

4. МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ.


Физика в основной школе изучается с 7 по 9 класс. Общее число учебных часов за 3 года обучения составляет 208 часов, из них по 70 (2 часа в неделю) в 7 , 8 классах и 68 часов в 9 классе.


5. Ценностные ориентиры содержания предмета

Ценностные ориентиры содержания курса физики в основной школе определяются спецификой физики как науки. Понятие «ценности» включает единство объективного (сам объект) и субъективного (отношение субъекта к объекту), поэтому в качестве ценностных ориентиров физического образования выступают объекты, изучаемые в курсе физики, к которым у учащихся формируется ценностное отношение. Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностная ориентация, формируемая у учащихся в процессе изучения физики, проявляется:

  • в признании ценности научного знания, его практической значимости , достоверности;

  • в осознании ценности физических методов исследования живой и неживой природы;

  • в понимании сложности и противоречивости самого процесса познания как извечного стремления к истине.

Ценностная ориентация содержания курса физики может рассматриваться как формирование:

  • уважительного отношения к созидательной, творческой деятельности;

  • понимание необходимости эффективного и безопасного использования различных технических устройств;

  • потребности в безусловном выполнении правил безопасности использования веществ в повседневной жизни;

  • создание выбора будущей профессиональной деятельности.

Курс физики обладает возможностями формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностная ориентация направлена на воспитание у учащихся:

  • правильного использования физической терминологии и символики;

  • потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;

  • способности открыто выражать и аргументировано отстаивать свою точку зрения.



6. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ
РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ФИЗИКИ В 7 КЛАССЕ



Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.


Личностные:

у учащихся будут сформированы:

  • ответственное отношение к учению; готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпример;

  • основы экологической культуры; понимание ценности здорового образа жизни;

  • формирование способности к эмоциональному восприятию физических задач, решений, рассуждений;

  • умение контролировать процесс и результат учебной деятельности;

у учащихся могут быть сформированы:

  • коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • креативность мышления, инициативы, находчивости, активности при решении задач.



Метапредметные:

регулятивные

учащиеся научатся:

  • формулировать и удерживать учебную задачу;

  • выбирать действия в соответствии с поставленной задачей и условиями её реализации;

  • планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • предвидеть уровень усвоения знаний, его временных характеристик;

  • составлять план и последовательность действий;

  • осуществлять контроль по образцу и вносить необходимые коррективы;

  • адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

учащиеся получат возможность научиться:

  • определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;

  • предвидеть возможности получения конкретного результата при решении задач;

  • осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;

  • выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;

  • концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;



познавательные

учащиеся научатся:

  • самостоятельно выделять и формулировать познавательную цель;

  • использовать общие приёмы решения задач;

  • применять правила и пользоваться инструкциями и освоенными закономерностями;

  • осуществлять смысловое чтение;

  • создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;

  • находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;


учащиеся получат возможность научиться:

  • устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

  • формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  • видеть физическую задачу в других дисциплинах, в окружающей жизни;

  • выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  • выбирать наиболее рациональные и эффективные способы решения задач;

  • интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);

  • оценивать информацию (критическая оценка, оценка достоверности);

  • устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;



коммуникативные

учащиеся научатся:

  • организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;

  • взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  • прогнозировать возникновение конфликтов при наличии разных точек зрения;

  • разрешать конфликты на основе учёта интересов и позиций всех участников;

  • координировать и принимать различные позиции во взаимодействии;

  • аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.



Предметные:

учащиеся научатся:

  • распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, инерция, взаимодействие тел, колебательное движение, волновое движении, прямолинейное распространение света, отражение и преломление света,

  • описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

  • анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, I, II и III законы Ньютона, закон Гука, закон Паскаля, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;

  • различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;

  • решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон Гука, и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения), закон прямолинейного распространения света, закон отражения света, закон преломления света): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты;

  • самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;

  • пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

  • знать основные способы представления и анализа статистических данных; уметь решать задачи с помощью перебора возможных вариантов;

учащиеся получат возможность научиться:

  • использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

  • приводить примеры практического использования физических знаний о механических явлениях и физических законах;

  • различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии) и ограниченность использования частных законов (закон Гука и др.);

  • приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

  • находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.


  1. Организация учебного процесса

Соответственно действующему учебному плану рабочая программа предусматривает базовый уровень обучения в объеме 70 часов (в неделю - 2 часа), из них для проведения: контрольных работ - 5 учебных часов, лабораторных работ - 14 учебных часов.

С учетом уровневой специфики 7 класса выстроено тематическое планирование: система учебных уроков, спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты), что представлено далее. Планируется в преподавании предмета использование следующих педагогических технологий:

  • технологии личностно ориентированного обучения;

  • технологии полного усвоения;

  • технологии обучения на основе решения задач;

  • технологии обучения на основе схематичных и знаковых моделей;

  • технологии проблемного обучения.

В течение года возможны коррективы рабочей программы, связанные с объективными причинами.

В условиях перехода общеобразовательных школ к ФГОС второго поколения перед учителями ставятся задачи: формирование знаний в соответствии с новыми государственными образовательными стандартами, формирование универсальных учебных действий ( УУД), обеспечивающих все учебные предметы, формирование компетенций, позволяющих ученикам действовать в новой обстановке на качественно высоком уровне.

Свою задачу как учителя физики я вижу в создании методической системы, основанной на системно-деятельностном подходе.

Системно-деятельностный подход нацелен на развитие личности, на формирование гражданской идентичности. Обучение должно быть организовано так, чтобы целенаправленно вести за собой развитие.

Основной формой организации обучения является урок, следовательно, для того, чтобы выстроить урок в рамках системно-деятельностного подхода, необходимо соблюдать принципы построения урока, примерную типологию уроков и критерии оценивания урока.

Дидактические принципы системно-деятельностного подхода:

1)Принцип деятельности - заключается в том, что ученик, получая знания не в готовом виде, а, добывая их сам, осознает при этом содержание и формы своей учебной деятельности, понимает и принимает систему ее норм, активно участвует в их совершенствовании, что способствует активному успешному формированию его общекультурных и деятельностных способностей, общеучебных умений.

2) Принцип непрерывности - означает преемственность между всеми ступенями и этапами обучения на уровне технологии, содержания и методик с учетом возрастных психологических особенностей развития детей.

3) Принцип целостности - предполагает формирование учащимися обобщенного системного представления о мире (природе, обществе, самом себе, социокультурном мире и мире деятельности, о роли и месте каждой науки в системе наук).

4) Принцип минимакса - заключается в следующем: школа должна предложить ученику возможность освоения содержания образования на максимальном для него уровне (определяемом зоной ближайшего развития возрастной группы) и обеспечить при этом его усвоение на уровне социально безопасного минимума (государственного стандарта знаний).

5) Принцип психологической комфортности - предполагает снятие всех стрессообразующих факторов учебного процесса, создание в школе и на уроках доброжелательной атмосферы, ориентированной на реализацию идей педагогики сотрудничества, развитие диалоговых форм общения.

6) Принцип вариативности - предполагает формирование обучающимися способностей к систематическому перебору вариантов и адекватному принятию решений в ситуациях выбора.

7) Принцип творчества - означает максимальную ориентацию на творческое начало в образовательном процессе, приобретение обучающимися собственного опыта творческой деятельности.

Большую значимость образования сохраняет информационно-коммуникативная деятельность учащихся, в рамках которой развиваются умения и навыки поиска нужной информации по заданной теме в источниках различного типа, извлечения необходимой информации из источников, созданных в различных знаковых системах (текст, таблица, график, диаграмма, и др.), перевода информации из одной знаковой системы в другую (из текста в таблицу, из аудиовизуального ряда в текст и др.), выбора знаковых систем адекватно познавательной и коммуникативной ситуации, отделения основной информации от второстепенной, критического оценивания достоверности полученной информации, передачи содержания информации адекватно поставленной цели (сжато, полно, выборочно). Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается уверенное использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности. Учащиеся должны уметь работать с физическими приборами.

Рабочая программа предусматривает следующие варианты дидактико-технологического обеспечения учебного процесса: наглядные пособия для курса физики, таблицы, чертёжные принадлежности и физическое оборудование (лабораторное и демонстрационное); для информационно-компьютерной поддержки учебного процесса используются: компьютер, презентации, проекты учащихся и учителей; программно-педагогические средства, а также рабочая программа, справочная литература, учебники, разноуровневые тесты, тексты самостоятельных и контрольных работ, задания для проектной деятельности.

8. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Раздел

Количество часов

Лабораторные работы

Контрольные работы

Примерные темы проектов

Введение

6


Л.Р. № 1 «Измерение длины, объёма и температуры тела».

Л.Р..№ 2 «Измерение размеров малых тел».

Л.Р. № 3 « Измерение времени».

*** Л. опыт «Измерение малых величин».


К.Р. Входная (кратковременная)

Как проводить наблюдения.

Как проводить опыты.

Зачем нужны точные наблюдения.

Измерительные приборы.

История происхождения метра.

Как измерить толщину волоса.

Механические явления


37

Л.Р.№ 4 «Изучение равномерного движения».

Л.Р. № 5 «Измерение массы тела на рычажных весах»;

Л.Р. № 6 «Измерение плотности вещества твердого теле».

Л.Р. № 7 «Градуировка пружины и измерение сил».

Л.Р. № 8 «Измерение коэффициента трения скольжения».

Л.Р.№ 9 « Выяснение условий равновесия рычага».

Л.Р. № 10 «Определение КПД при подъеме тела по наклонной плоскости».


К.р. № 1 «Механическое движение. Скорость».

К.Р.№ 2 «Масса тела. Сила».

К.Р.№3 «Работа и мощность. Простые механизмы».


Способы измерения пройденного пути.

Самые быстрые(медленные) животные.

Самые быстрые(медленные) явления.

Я обвиняю силу трения.

Я защищаю силу трения.

Архимедова сила.

Энергия воды.

Звуковые явления


6

-

-

Источники звука.

Человек в мире звуков.

Как мы слышим.


Световые явления

15

Л.Р. № 11 «Наблюдение прямолинейного распространения света».

Л.Р. № 12 «Изучения явления отражения света».

Л.Р. №13 «Изучение явления преломления света»

Л.Р.№14 «Изучение изображения, даваемое линзой».


К.Р.№ 4 «Световые явления».


Источники света.

Театр теней.

Лунные затмения.

Солнечные затмения.

Резерв

6

-

Итоговая К.Р.№ 5


ИТОГО

70

14

5




9. СОДЕРЖАНИЕ ПРОГРАММЫ

Введение (6 ч)

Что и как изучают физика и астрономия.

Физические явления. Наблюдения и эксперимент. Гипотеза. Физические величины. Единицы величин. Измерение физических величин. Физические приборы. Понятие о точности измерений. Абсолютная погрешность. Запись результата прямого измерения с учетом абсолютной погрешности. Уменьшение погрешности измерений. Измерение малых величин.

Физические законы и границы их применимости.

Физика и техника

Фронтальные лабораторные работы

1. Измерение длины, объема и температуры тела.

2. Измерение размеров малых тел.

3. Измерение времени.

*** Л. опыт «Измерение малых величин».



Движение и взаимодействие тел (37 ч)

Механическое движение и его виды. Относительность механического движения. Траектория. Путь. Равномерное прямолинейное движение. Скорость равномерного прямолинейного движения.

Неравномерное прямолинейное движение. Средняя скорость. Равноускоренное движение. Ускорение.

Явление инерции. Взаимодействие тел. Масса тела. Измерение массы при помощи весов. Плотность вещества.

Сила. Графическое изображение сил. Измерение сил. Динамометр. Сложение сил, направленных по одной прямой. Равнодействующая сила.

Международная система единиц.

Сила упругости. Закон Гука. Сила тяжести. Ускорение свободного падения. Центр тяжести. Закон всемирного тяготения. Вес тела. Невесомость. Давление. Сила трения. Виды трения.

Механическая работа. Мощность. Простые механизмы. Условие равновесия рычага. Золотое правило механики. Применение простых механизмов. КПД механизмов.

Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Энергия рек и ветра.

Л.опыт «Измерение средней скорости».

Л.опыт «Изучение равноускоренного движения».

Фронтальные лабораторные работы

4. Изучение равномерного движения.

5. Измерение массы тела на рычажных весах.

6. Измерение плотности вещества твердого тела.

7. Градуировка динамометра и измерение сил

8. Измерение коэффициента трения скольжения

9. Изучение условия равновесия рычага.

10. Измерение КПД при подъеме тела по наклонной плоскости.



Звуковые явления (6 ч)

Механические колебания и их характеристики: амплитуда, период, частота. Звуковые колебания. Источники звука.

Механические волны. Длина волны. Звуковые волны. Скорость звука.

Громкость звука. Высота тона. Тембр.

Отражение звука. Эхо.

*** Математический маятник. Период колебаний математического и пружинного маятника.

Л. опыты «Наблюдение колебаний звучащих тел».

Л. опыты «Исследование зависимости периода колебаний груза, подвешенного на нить, от длины нити».

Л. опыты «Наблюдение зависимости громкости звука от амплитуды колебаний»

*** Л. опыты «Исследование зависимости периода колебаний пружинного маятника от массы груза и жесткости пружины.



Световые явления (15 ч)

Источники света. Закон прямолинейного распространения света. Световые пучки и световые лучи. Образование тени и полутени. Солнечное и лунное затмения.

Отражение света. Закон отражения света. Зеркальное и диффузное отражение. Построение изображений в плоском зеркале. Перископ.

Преломление света. Полное внутреннее отражение. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Построение изображения, даваемого линзой. Увеличение линзы.

Оптические приборы: проекционный аппарат, фотоаппарат. Глаз как оптическая система. Нормальное зрение, близорукость, дальнозоркость. Очки. Лупа.

Разложение белого света в спектр. Сложение спектральных цветов. Цвета тел.

*** Вогнутое зеркало. Применение вогнутого зеркала.

*** Волоконная оптика. Формула тонкой линзы.

Л. опыты «Наблюдение тени и полутени»

Л. опыты « Получение и исследование изображения в плоском зеркале»



Фронтальные лабораторные работы

11. Наблюдение прямолинейного распространения света.

12. Изучение явления отражения света.

13. Изучение явления преломления света.

14. Изучение изображения, даваемого линзой.



Резервное время (6 ч)



10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕСС

УМК «Физика. 7 класс»

  1. Физика. 7 класс. Учебник (авторы Н. С. Пурышева, Н. Е. Важеевская).

  2. Физика. Рабочая тетрадь. 7 класс (авторы Н. С. Пурышева, Н. Е. Важеевская).

  3. Физика. Методическое пособие. 7 класс (авторы Н. С. Пурышева, Н. Е. Важеевская).

  4. Физика. Контрольные и проверочные работы. 7 класс (авторы Н. С. Пурышева, Н. Е. Важеевская, О. В. Лебедева).

  5. Мультимедийное приложение к учебнику.



Список наглядных пособий

Таблицы общего назначения

  1. Международная система единиц (СИ).

  2. Приставки для образования десятичных кратных и дольных единиц.

  3. Физические постоянные.

  4. Шкала электромагнитных волн.

  5. Правила по технике безопасности при работе в кабинете физики.

  6. Меры безопасности при постановке и проведении лабораторных работ по электричеству.

  7. Порядок решения количественных задач.

Тематические таблицы

  1. Глаз как оптическая система.

  2. Оптические приборы.

  3. Броуновское движение. Диффузия.

  4. Поверхностное натяжение, капиллярность.

  5. Строение атмосферы Земли.

  6. Атмосферное давление.

  7. Барометр-анероид.

  8. Виды деформаций I.

  9. Виды деформаций II.

  10. Измерение температуры.

  11. Внутренняя энергия.

  12. Теплоизоляционные материалы.

  13. Плавление, испарение, кипение.

  14. Манометр.

  15. Двигатель внутреннего сгорания.

  16. Двигатель постоянного тока.

  17. Траектория движения.

  18. Относительность движения.

  19. Второй закон Ньютона.

  20. Реактивное движение.

  21. Космический корабль «Восток».

  22. Работа силы.

  23. Механические волны.

  24. Приборы магнитоэлектрической системы.

  25. Схема гидроэлектростанции.

  26. Трансформатор.

  27. Передача и распределение электроэнергии.

  28. Динамик. Микрофон.

  29. Шкала электромагнитных волн.

  30. Модели строения атома.

  31. Схема опыта Резерфорда.

  32. Цепная ядерная реакция.

  33. Ядерный реактор.

  34. Звезды.

  35. Солнечная система.

  36. Затмения.

  37. Земля - планета Солнечной системы. Строение Солнца.

  38. Луна.

  39. Планеты земной группы.

  40. Планеты-гиганты.

  41. Малые тела Солнечной системы.


Комплект портретов для кабинета физики

Электронные учебные издания

1. Физика. Библиотека наглядных пособий. 7-11 классы (под редакцией Н. К. Ханнанова).

2. Комплект электронных пособий. 8 класс.М. Дрофа. 2008

3. Комплект электронных пособий. 9 класс.М. Дрофа. 2008



Информационно-методическое обеспечение

  1. Федеральный государственный образовательный стандарт [Электронный ресурс]. - Режим доступа:

  2. Сайт Министерства образования и науки Российской Федерации// официальный сайт. - Режим доступа:

  3. Методическая служба. Издательство «БИНОМ. Лаборатория знаний» [Электронный ресурс]. - Режим доступа:

  4. Физика: еженедельное учебно-методическое приложение к газете «Первое сентября». .

  5. Федеральное государственное учреждение «Государственный научно-исследовательский институт информационных технологий и телекоммуникаций»: .

  6. Путеводитель «В мире науки» для школьников:
    .

  7. Мегаэнциклопедия Кирилла и Мефодия:

  8. Сайт энциклопедий:

  9. Электронные образовательные ресурсы к учебникам в Единой коллекции



11. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ

ФИЗИКИ В 7 КЛАССЕ

Введение

Называть:

  • условные обозначения физических величин: длина (l), температура (t°), время (t), масса (m);

  • единицы физических величин: м, °С, с, кг;

  • физические приборы: линейка, секундомер, термометр, рычажные весы;

  • методы изучения физических явлений: наблюдение, эксперимент, теория.

Воспроизводить:

  • определения понятий: измерение физической величины, цена деления, шкалы измерительного прибора.

Приводить примеры:

  • физических и астрономических явлений, физических свойств тел и веществ, физических приборов, взаимосвязи физики и техники.

Объяснять:

  • роль и место эксперимента в процессе познания, причины погрешностей измерений и способы их уменьшения.

Уметь:

  • измерять длину, время, температуру;

  • вычислять погрешность прямых измерений длины, температуры, времени; погрешность измерения малых величин;

  • записывать результат измерений с учетом погрешности.

Обобщать:

  • полученные при изучении темы знания, представлять их в структурированном виде.



Движение и взаимодействие тел

Называть:

  • условные обозначения физических величин: путь (s), время (t), скорость (v), ускорение (a), масса (m), плотность (ρ), сила (F), давление (p), вес (P), энергия (E);

  • единицы перечисленных выше физических величин;

  • физические приборы: спидометр, рычажные весы.

Воспроизводить:

  • определения понятий: механическое движение, равномерное движение, равноускоренное движение, тело отсчета, траектория, путь, скорость, ускорение, масса, плотность, сила, сила тяжести, сила упругости, сила трения, вес, давление, механическая работа, мощность, простые механизмы, КПД простых механизмов, энергия, потенциальная и кинетическая энергия;

  • формулы: скорости и пути равномерного движения, средней скорости, скорости равноускоренного движения, плотности вещества, силы, силы трения, силы тяжести, силы упругости, давления, работы, мощности;

  • графики зависимости: пути равномерного движения от времени, скорости равноускоренного движения от времени, силы упругости от деформации, силы трения скольжения от силы нормального давления;

  • законы: принцип относительности Галилея, закон сохранения энергии в механике.

Описывать:

  • наблюдаемые механические явления.

Объяснять:

  • физические явления: взаимодействие тел, явление инерции;

  • сложение сил, действующих на тело;

  • превращение потенциальной и кинетической энергии из одного вида в другой;

  • относительность механического движения;

  • применение законов механики в технике.

Понимать:

  • существование различных видов механического движения;

  • векторный характер физических величин: v, a, F;

  • возможность графической интерпретации механического движения;

  • массу как меру инертности тела;

  • силу как меру взаимодействия тела с другими телами;

  • энергию как характеристику способности тела совершать работу;

  • значение закона сохранения энергии в механике.

Уметь:

  • определять неизвестные величины, входящие в формулы: скорости равномерного и равноускоренного движения, средней скорости, плотности вещества, силы, силы упругости (закона Гука), силы тяжести, силы трения, механической работы, мощности, КПД;

  • строить графики зависимости: пути от времени при равномерном движении, скорости от времени при равноускоренном движении, силы упругости от деформации, силы трения от силы нормального давления;

  • по графикам определять значения соответствующих величин.

Применять:

  • знания по механике к анализу и объяснению явлений природы.

Классифицировать:

  • различные виды механического движения.

Обобщать:

  • знания о законах динамики.

Применять:

  • методы естественно-научного познания при изучении механических явлений.



Звуковые явления

Называть:

  • условные обозначения физических величин: смещение (x), амплитуда (A), период (T), частота (ν), длина волны (λ), скорость волны (v);

  • единицы этих величин: м, с, Гц, м/с;

  • диапазон частот звуковых колебаний.

Воспроизводить:

  • определения понятий: механические колебания, смещение, амплитуда, период, частота, волновое движение, поперечная волна, продольная волна, длина волны;

  • формулы связи частоты и периода колебаний, длины волны, скорости звука; закон отражения звука.

Объяснять:

  • процесс установления колебаний груза, подвешенного на нити, и пружинного маятника;

  • процесс образования поперечной и продольной волн;

  • процесс распространения звука в среде;

  • происхождение эха.

Понимать:

  • характер зависимости периода колебаний груза, подвешенного на нити, от длины нити;

  • характер зависимости длины волны в среде от частоты колебаний частиц среды и скорости распространения волны;

  • источником звука является колеблющееся тело;

  • характер зависимости скорости звука от свойств среды и температуры;

  • зависимость громкости звука от амплитуды колебаний, высоты звука от частоты колебаний.

Уметь:

  • вычислять частоту колебаний маятника по известному периоду, и наоборот;

  • неизвестные величины, входящие в формулу длины волны;

  • неизвестные величины, входящие в формулу скорости звука;

  • определять экспериментально период колебаний груза, подвешенного на пружине.

Обобщать:

  • знания о характеристиках колебательного движения;

  • знания о свойствах звука.

Сравнивать:

  • механические и звуковые колебания;

  • механические и звуковые волны.



Световые явления

Называть:

  • условные обозначения физических величин: фокусное расстояние линзы (F), оптическая сила линзы (D), увеличение лупы;

  • единицы этих физических величин: м, дптр;

  • естественные и искусственные источники света;

  • основные точки и линии линзы;

  • оптические приборы: зеркало, линза, фотоаппарат, проекционный аппарат, лупа, очки;

  • недостатки зрения: близорукость и дальнозоркость;

  • состав белого света;

  • дополнительные и основные цвета.

Распознавать:

  • естественные и искусственные источники света;

  • лучи падающий, отраженный, преломленный;

  • углы падения, отражения, преломления;

  • зеркальное и диффузное отражение;

  • сложение цветов и смешение красок.

Воспроизводить:

  • определения понятий: источник света» световой пучок, световой луч, точечный источник света, мнимое изображение, предельный угол полного внутреннего отражения, линза, аккомодация глаза, угол зрения, расстояние наилучшего видения, увеличение лупы;

  • формулу оптической силы линзы;

  • законы прямолинейного распространения света, отражения, преломления света;

  • принцип обратимости световых лучей.

Описывать:

  • наблюдаемые световые явления;

  • особенности изображения предмета в плоском зеркале и в линзе;

  • строение глаза и его оптическую систему.

Объяснять:

  • физические явления: образование тени и полутени, солнечные и лунные затмения;

  • ход лучей в призме;

  • ход лучей в фотоаппарате и проекционном аппарате и их устройство;

  • оптическую систему глаза;

  • зависимость размеров изображения от угла зрения;

  • причины близорукости и дальнозоркости и роль очков в их коррекции;

  • увеличение угла зрения с помощью лупы;

  • происхождение радуги.

Понимать:

  • разницу между естественными и искусственными источниками света;

  • разницу между световым пучком и световым лучом;

  • точечный источник света и световой луч - идеальные модели;

  • причину разложения белого света в спектр.



Уметь:

  • применять знания законов прямолинейного распространения света, отражения и преломления к объяснению явлений;

  • изображать на чертеже световые пучки с помощью световых лучей;

  • строить: изображение предмета в плоском зеркале, ход лучей в призме, ход лучей в линзе, изображение предметов, даваемых линзой, ход лучей в приборах, вооружающих глаз (очки, лупа);

  • вычислять оптическую силу линзы по известному фокусному расстоянию, и наоборот.

Сравнивать:

  • оптические приборы и ход лучей в них.

Устанавливать аналогию:

  • между строением глаза и устройством фотоаппарата.

Использовать:

  • методы научного познания при изучении явлений (прямолинейного распространения, отражения и преломления света).



13.ПРОВЕРКА ЗНАНИЙ УЧАЩИХСЯ



Оценка ответов учащихся

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, 6eз использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «3» ставиться, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

Оценка «1» ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и

недочётов.

Оценка «4» ставится за работу выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей

работы или допустил не более одной грубой ошибки и.двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 - 5 недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Оценка «1» ставится, если ученик совсем не выполнил ни одного задания.



Оценка лабораторных работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

Оценка «4» ставится, если выполнены требования к оценке «5» , но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

Оценка «3» ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Оценка «1» ставится, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если ученик не соблюдал требования правил безопасности груда.



Перечень ошибок.

Грубые ошибки.

  1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.

  2. Неумение выделять в ответе главное.

  3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.

  4. Неумение читать и строить графики и принципиальные схемы.

  5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.

  6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.

  7. Неумение определить показания измерительного прибора.

  8. Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки.

  1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.

  2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.

  3. Пропуск или неточное написание наименований единиц физических величин.

  4. Нерациональный выбор хода решения.

Недочеты.

Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата. Отдельные погрешности в формулировке вопроса или ответа. Небрежное выполнение записей, чертежей, схем, графиков. Орфографические и пунктуационные ошибки.





 
 
X

Чтобы скачать данный файл, порекомендуйте его своим друзьям в любой соц. сети.

После этого кнопка ЗАГРУЗКИ станет активной!

Кнопки рекомендации:

загрузить материал