- Учителю
- Рабочая программа по математике 6 класс. 5 часов в неделю.
Рабочая программа по математике 6 класс. 5 часов в неделю.
Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №229 Адмиралтейского района Санкт-Петербурга
Согласовано
Заместитель директора по УВР
ГБОУ средней школы №229
___________ /_____________/
Принято
Протокол педагогического совета
от________№__________
Утверждено
Директор ГБОУ средней школы №229
____________Петрова Н.А.
Приказ от_________№______
РАБОЧАЯ ПРОГРАММА
ПО
математике
6б класс
на 2016-2017 учебный год
Составила учитель первой
квалификационной категории
Довгополюк Светлана Викторовна
Санкт-Петербург
2016
Содержание
-
Паспорт рабочей программы
-
Пояснительная записка
-
Содержание учебного курса
-
Планируемые результаты
-
Учебно-тематический план
-
Перечень учебно-методических средств обучения, ЭОР (электронных образовательных ресурсов)
-
Перечень обязательных лабораторных, практических, контрольных и других видов работ
-
Критерии и нормы оценки результатов освоения программы обучающимися
-
Список литературы
-
Паспорт рабочей программы
Программа общеобразовательных учреждений
Статус программы
Рабочая программа учебного курса
Название, автор и год издания предметной учебной программы (примерной, авторской), на основе которой разработана Рабочая программа;
Математика. Книга для учителя. 5-6 классы. Потапов М.К., Шевкин А.В.
Категория обучающихся
Учащиеся 6 а класса ГБОУ средней школы №229 Адмиралтейского района Санкт-Петербурга
Сроки освоения программы
1 год
Объём учебного времени
170 часов
Форма обучения
Очная
Режим занятий
5 часов в неделю
2. Пояснительная записка
Цели:
-
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
-
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
-
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
-
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Задачи:
-
работы с математическими моделями, приемами их построения и исследования;
-
методами исследования реального мира, умения действовать в нестандартных ситуациях;
-
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
-
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
-
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи;
-
использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации;
-
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
-
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Статус документа
Материалы к рабочей программе по предмету «Математика, 6» составлены на основе:
-
федерального компонента государственного стандарта основного общего образования,
-
примерной программы по математике основного общего образования,
-
федерального перечня учебников, рекомендованных Министерством образования РФ,
-
с учетом требований к оснащению образовательного процесса, в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
-
авторского тематического планирования учебного материала,
-
базисного учебного плана 2004 года.
3. Содержание рабочей программы
В рабочей программе представлены содержание математического образования, требования к обязательному и возможному уровню подготовки обучающегося и выпускника, виды контроля, а также компьютерное обеспечение урока.
Система уроков условна, но все же выделяются следующие виды:
Урок-лекция. Предполагаются совместные усилия учителя и учеников для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или учениками, мультимедийные продукты.
Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования, решение различных задач, изучение свойств различных функций, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.
Урок-исследование. На уроке учащиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.
Комбинированный урок предполагает выполнение работ и заданий разного вида.
Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой учащийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.
Урок-тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности учащихся, тренировки технике тестирования. Тесты предлагаются как в печатном так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.
Урок-зачет. Устный опрос учащихся по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.
Урок-самостоятельная работа. Предлагаются разные виды самостоятельных работ: двухуровневая - уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5»; большой список заданий разного уровня, из которого учащийся решает их по своему выбору. Рядом с учеником на таких уроках - включенный компьютер, который он использует по своему усмотрению.
Урок-контрольная работа. Проводится на двух уровнях:
уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».
Компьютерное обеспечение уроков.
В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения, а также различные электронные учебники.
Демонстрационный материал (слайды).
Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.
Изучение многих тем в математике связано с знанием и пониманием свойств элементарных функций. Решение уравнений, неравенств, различных задач предполагает глубокое знание поведения элементарных функций. Научиться распознавать графики таких функций, суметь рассказать об их свойствах помогают компьютерные слайды .
При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.
Задания для устного счета.
Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель - ученик, взаимопроверки, а также в виде тренировочных занятий.
Тренировочные упражнения.
Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.
Электронные учебники.
Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала. На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность учащихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.
Содержание учебного курса
Отношения, пропорции, проценты - 25 ч
Отношение чисел и величин. Масштаб. Деление числа в заданном отношении. Пропорции. Прямая и обратная пропорциональность. Понятие о проценте. Задачи на проценты. Круговые диаграммы. Задачи на перебор всех возможных вариантов. Вероятность события.
Основная цель - восстановить навыки работы с натуральными и рациональными числами, усвоить понятия, связанные с пропорциями и процентами.
Целые числа - 34 ч
Отрицательные целые числа. Противоположное число. Модуль числа. Сравнение целых чисел. Сложение целых чисел. Законы сложения целых чисел. Разность целых чисел. Произведение целых чисел. Частное целых чисел. Распределительный закон. Раскрытие скобок и заключение в скобки. Действия с суммами нескольких слагаемых. Представление целых чисел на координатной оси.
Основная цель - научить учащихся работать со знаками, так как арифметические действия над их модулями - натуральными числами - уже хорошо усвоены.
Рациональные числа - 36 ч
Отрицательные дроби. Рациональные числа. Сравнение рациональных чисел. Сложение и вычитание дробей. Умножение и деление дробей. Законы сложения и умножения. Смешанные дроби произвольного знака. Изображение рациональных чисел на координатной оси. Уравнения. Решение задач с помощью уравнений.
Основная цель - добиться осознанного владения школьниками арифметических действий над рациональными числами.
Десятичные дроби - 33 ч
Понятие положительной десятичной дроби. Сравнение положительных десятичных дробей. Сложение и вычитание десятичных дробей. Перенос запятой в положительной десятичной дроби. Умножение положительных десятичных дробей. Деление положительных десятичных дробей. Десятичные дроби и проценты. Десятичные дроби любого знака. Приближение десятичных дробей. Приближение суммы, разности, произведения и частного двух чисел.
Основная цель - научить учащихся действиям с десятичными дробями и приближёнными вычислениями.
Обыкновенные и десятичные дроби -24 ч.
Разложение положительной обыкновенной дроби в конечную десятичную дробь. Бесконечные периодические десятичные дроби. Непериодические бесконечные периодические десятичные дроби. Длина отрезка. Длина окружности. Площадь круга. Координатная ось. Декартова система координат на плоскости. Столбчатые диаграммы и графики.
Основная цель - ввести действительные числа.
Повторение.-18 ч.
4. Планируемые результаты.
Отношения, пропорции, проценты
Предметные
-
Знать: определение отношения, определение и основное свойство пропорции, определение прямопропорциональных величин, определение обратной пропорциональной зависимости, определение масштаба.
-
Уметь: находить какую часть одно число составляет от другого и во сколько раз одно число больше другого, решать задачи на пропорцию, прямо- и обратно пропорциональные зависимости
-
Знать: формулы деления числа в заданном отношении
-
Уметь: решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин
-
Знать: алгоритм построения круговых диаграмм.
-
Уметь: строить круговые, столбчатые диаграммы, простейшие графики;
-
Знать: как решать задачи на перебор всех возможных вариантов.
-
Уметь: решать задачи на перебор всех возможных вариантов.
-
Знать: понятие события и вероятности.
-
Уметь самостоятельно выполнять задания по теме.
-
Уметь объяснять характер своей ошибки, решать подобное задание
Метапредметные
-
Коммуникативные:
-
развить у учащихся представление о месте математики в системе наук
-
развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии
-
слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения
-
формировать коммуникативные действия, направленные на структурирование информации по данной теме
-
формировать навыки учебного сотрудничества в ходе индивидуальной и групповой работы
-
воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для ее решения
-
управлять своим поведением (контроль, самокоррекция, оценка своего действия)
-
-
Регулятивные:
-
формировать целевые установки учебной деятельности
-
определять новый уровень отношения к самому себе как субъекту деятельности
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
определять последовательность промежуточных целей с учетом конечного результата, составлять план последовательности действий
-
самостоятельно находить и формировать учебную проблему, составлять план выполнения работы
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
осознавать самого себя как движущуюся силу своего учения, формировать способность к мобилизации сил и энергии, к волевому усилию - выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
формировать способность к мобилизации сил и энергии, к волевому усилию- выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
-
Познавательные:
-
различать методы познания окружающего мира по его целям (наблюдение, эксперимент, моделирование, вычисление)
-
анализировать результаты элементарных исследований, фиксировать их результаты
-
выделять существенную информацию из текстов разных видов
-
выявлять особенности (качества, признаки) разных объектов в процессе их рассматривания
-
сопоставлять характеристики объектов по одному или нескольким признакам, выявлять сходства и различия объектов
-
выполнять учебные задачи, не имеющие однозначного решения
-
произвольно и осознанно владеть общим приемом решения задач
-
.
. Личностные
-
Формирование стартовой мотивации к изучению нового
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыка осознанного выбора наиболее эффективного способа решения
-
Формирование устойчивой мотивации к индивидуальной деятельности по самостоятельно составленному плану
-
Формирование навыков самоанализа и самоконтроля.
-
Формирование мотивации к самосовершенствованию.
Целые числа
Предметные
-
Знать: определение координатной прямой, определение противоположных и целых чисел, определение модуля числа
-
Уметь: находить координаты точек на прямой, сравнивать рациональные числа, применять положительные и отрицательные числа для выражения, изменения величины
-
Знать: правила сравнения, сложения отрицательных чисел, сложения чисел с разными знаками, вычитания рациональных чисел
-
Уметь: сравнивать, складывать и вычитать числа с разными знаками с помощью координатной прямой, по правилу.
-
Иметь представления о перемещение по числовому ряду, о сложение для чисел разного знака; используют для решения познавательных задач справочную литературу.
-
Уметь записать в виде равенства, как могла переместиться точка при разных условиях, и сделать рисунок, соответствующий данному числовому выражению, найти и устранить причины возникших трудностей.
-
Знать: принцип устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов; Уметь: применять эти приемы на практике
-
Знать: понятие точки, плоскости.
-
Уметь: строить фигуры симметричные относительно точки.
-
Уметь объяснить характер своей ошибки, решить подобное задание
Метапредметные
-
Коммуникативные:
-
развить у учащихся представление о месте математики в системе наук
-
развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии
-
слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения
-
формировать коммуникативные действия, направленные на структурирование информации по данной теме
-
формировать навыки учебного сотрудничества в ходе индивидуальной и групповой работы
-
воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для ее решения
-
управлять своим поведением (контроль, самокоррекция, оценка своего действия)
-
-
Регулятивные:
-
формировать целевые установки учебной деятельности
-
определять новый уровень отношения к самому себе как субъекту деятельности
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
определять последовательность промежуточных целей с учетом конечного результата, составлять план последовательности действий
-
самостоятельно находить и формировать учебную проблему, составлять план выполнения работы
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
осознавать самого себя как движущуюся силу своего учения, формировать способность к мобилизации сил и энергии, к волевому усилию - выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
формировать способность к мобилизации сил и энергии, к волевому усилию- выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
-
Познавательные:
-
различать методы познания окружающего мира по его целям (наблюдение, эксперимент, моделирование, вычисление)
-
анализировать результаты элементарных исследований, фиксировать их результаты
-
выделять существенную информацию из текстов разных видов
-
выявлять особенности (качества, признаки) разных объектов в процессе их рассматривания
-
сопоставлять характеристики объектов по одному или нескольким признакам, выявлять сходства и различия объектов
-
выполнять учебные задачи, не имеющие однозначного решения
-
произвольно и осознанно владеть общим приемом решения задач
-
.
. Личностные
-
Формирование стартовой мотивации к изучению нового
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыка осознанного выбора наиболее эффективного способа решения
-
Формирование устойчивой мотивации к индивидуальной деятельности по самостоятельно составленному плану
-
Формирование навыков самоанализа и самоконтроля.
-
Формирование мотивации к самосовершенствованию.
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий.
Рациональные числа
Предметные
-
Знать: определение рационального числа, свойства рациональных чисел, правила умножения и деления положительных и отрицательных чисел
-
Уметь: умножать и делить рациональные числа, представлять дробь в виде бесконечной десятичной дроби
-
Иметь представление об отрицательном дробном числе, положительным дробном числе, о противоположных числах могут излагать информацию, разъясняя значения и смысл теории
-
Знать о правилах сравнения модулей положительных и отрицательных чисел; могут упрощать запись по образцу, умеют участвовать в диалоге
-
Знать: правила сравнения рациональных чисел. Уметь: пользоваться правилом для сравнения рациональных чисел.
-
Знать: правила сложения и вычитания рациональных чисел.
-
Уметь: складывать и вычитать рациональные числа.
-
Знать: правила умножения и деления рациональных чисел.
-
Уметь : умножать и делить рациональные числа.
-
Иметь представление об умножении и делении обыкновенных дробей, умножение смешанных чисел, о делении числа на обыкновенную дробь. Уметь выполнять эти действия.
-
Знать: законы сложения и умножения и уметь использовать их на практике.
-
Знать: другую форму записи рациональных чисел.
-
Знать: правила изображения чисел на координатной прямой и уметь: изображать числа на координатной прямой
-
Знать: понятие уравнения , корня уравнения, правило переноса члена уравнения в другую часть с противоположным знаком
-
Уметь: решать уравнения, выражать неизвестное,
-
Знать: решение задач алгебраическим способом.
-
Уметь: выполнять все действия со смешанными дробями
-
Уметь: составлять уравнения к задачам, анализировать задачи. Уметь: применять эти знания на практике
-
Знать: понятие буквенного выражения, значения буквенного выражения.
-
Уметь: составлять буквенные выражения. Строить фигуры на плоскости симметричные относительно прямой.
Метапредметные
-
Коммуникативные:
-
развить у учащихся представление о месте математики в системе наук
-
развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии
-
слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения
-
формировать коммуникативные действия, направленные на структурирование информации по данной теме
-
формировать навыки учебного сотрудничества в ходе индивидуальной и групповой работы
-
воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для ее решения
-
управлять своим поведением (контроль, самокоррекция, оценка своего действия)
-
-
Регулятивные:
-
формировать целевые установки учебной деятельности
-
определять новый уровень отношения к самому себе как субъекту деятельности
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
определять последовательность промежуточных целей с учетом конечного результата, составлять план последовательности действий
-
самостоятельно находить и формировать учебную проблему, составлять план выполнения работы
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
осознавать самого себя как движущуюся силу своего учения, формировать способность к мобилизации сил и энергии, к волевому усилию - выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
формировать способность к мобилизации сил и энергии, к волевому усилию- выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
-
Познавательные:
-
различать методы познания окружающего мира по его целям (наблюдение, эксперимент, моделирование, вычисление)
-
анализировать результаты элементарных исследований, фиксировать их результаты
-
выделять существенную информацию из текстов разных видов
-
выявлять особенности (качества, признаки) разных объектов в процессе их рассматривания
-
сопоставлять характеристики объектов по одному или нескольким признакам, выявлять сходства и различия объектов
-
выполнять учебные задачи, не имеющие однозначного решения
-
произвольно и осознанно владеть общим приемом решения задач
-
.
. Личностные
-
Формирование стартовой мотивации к изучению нового
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыка осознанного выбора наиболее эффективного способа решения
-
Формирование устойчивой мотивации к индивидуальной деятельности по самостоятельно составленному плану
-
Формирование навыков самоанализа и самоконтроля.
-
Формирование мотивации к самосовершенствованию.
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий.
Десятичные дроби
Предметные
-
Знать: правила действий с десятичными дробями и приближёнными вычислениями.
-
Уметь: сравнивать и округлять десятичные дроби; находить значения числовых выражений.
-
Знать: правила сложения и вычитания десятичных дробей
-
Уметь: складывать и вычитать десятичные дроби.
-
Знать: правила переноса запятой в положительной десятичной дроби и уметь применять правила на практике
-
Знать: правила умножение положительных десятичных дробей и уметь: применять правила на практике
-
Знать: правила деления положительных десятичных дробей и уметь: применять правила на практике
-
Знать: перевод десятичных дробей в проценты
-
Уметь: решать задачи на проценты с использованием десятичных дробей
-
Знать: действия с десятичными дробями и приближёнными вычислениями
-
Уметь: выполнять действия с десятичными дробями и приближенными вычислениями
-
Знать: операции вычислений с помощью калькулятора
-
Уметь: выполнять процентные расчеты с помощью калькулятора
Метапредметные
-
Коммуникативные:
-
развить у учащихся представление о месте математики в системе наук
-
развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии
-
слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения
-
формировать коммуникативные действия, направленные на структурирование информации по данной теме
-
формировать навыки учебного сотрудничества в ходе индивидуальной и групповой работы
-
воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для ее решения
-
управлять своим поведением (контроль, самокоррекция, оценка своего действия)
-
-
Регулятивные:
-
формировать целевые установки учебной деятельности
-
определять новый уровень отношения к самому себе как субъекту деятельности
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
определять последовательность промежуточных целей с учетом конечного результата, составлять план последовательности действий
-
самостоятельно находить и формировать учебную проблему, составлять план выполнения работы
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
осознавать самого себя как движущуюся силу своего учения, формировать способность к мобилизации сил и энергии, к волевому усилию - выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
формировать способность к мобилизации сил и энергии, к волевому усилию- выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
-
Познавательные:
-
различать методы познания окружающего мира по его целям (наблюдение, эксперимент, моделирование, вычисление)
-
анализировать результаты элементарных исследований, фиксировать их результаты
-
выделять существенную информацию из текстов разных видов
-
выявлять особенности (качества, признаки) разных объектов в процессе их рассматривания
-
сопоставлять характеристики объектов по одному или нескольким признакам, выявлять сходства и различия объектов
-
выполнять учебные задачи, не имеющие однозначного решения
-
произвольно и осознанно владеть общим приемом решения задач
-
.
. Личностные
-
Формирование стартовой мотивации к изучению нового
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыка осознанного выбора наиболее эффективного способа решения
-
Формирование устойчивой мотивации к индивидуальной деятельности по самостоятельно составленному плану
-
Формирование навыков самоанализа и самоконтроля.
-
Формирование мотивации к самосовершенствованию.
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий.
Обыкновенные и десятичные дроби
Предметные
-
Знать: определение действительного числа.
-
Уметь: работать с действительными числами, переводить обыкновенную дробь в конечную десятичную
-
Уметь: представлять десятичную дробь в бесконечную периодическую, расширить кругозор о действительных числах
-
Знать: определение отрезка, длины отрезка
-
Уметь: чертить отрезок, знать правила оформления, находить длину отрезка
-
Знать: формулы длины окружности, площади круга и уметь: вычислять значение по формуле
-
Знать: понятие координатной оси, как отмечать действительные числа на координатной оси.
-
Уметь: отмечать координаты точек, определять координаты точек и нахождение точки по координатам
-
Знать: понятие декартова система координат, осей координат, абсциссы и ординаты точки, координатных четвертей и уметь: применять на практике
-
Знать: понятие столбчатой диаграммы
-
Уметь: строить столбчатые диаграммы, читать простейшие графики, строить графики, применять знания на практике
-
Знать: как решаются задачи на составление и разрезание фигур
-
Уметь: решать задачи такого типа
-
Умеют решать логические и занимательные задачи
Метапредметные
-
Коммуникативные:
-
развить у учащихся представление о месте математики в системе наук
-
развивать умение точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии
-
слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения
-
формировать коммуникативные действия, направленные на структурирование информации по данной теме
-
формировать навыки учебного сотрудничества в ходе индивидуальной и групповой работы
-
воспринимать текст с учетом поставленной учебной задачи, находить в тексте информацию, необходимую для ее решения
-
управлять своим поведением (контроль, самокоррекция, оценка своего действия)
-
-
Регулятивные:
-
формировать целевые установки учебной деятельности
-
определять новый уровень отношения к самому себе как субъекту деятельности
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
определять последовательность промежуточных целей с учетом конечного результата, составлять план последовательности действий
-
самостоятельно находить и формировать учебную проблему, составлять план выполнения работы
-
проводить контроль в форме сравнения способа действия и его результат с заданным эталоном с целью обнаружения отклонений от эталона и внесения необходимых коррективов
-
осознавать самого себя как движущуюся силу своего учения, формировать способность к мобилизации сил и энергии, к волевому усилию - выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
формировать способность к мобилизации сил и энергии, к волевому усилию- выбору в ситуации мотивационного конфликта и к преодолению препятствий
-
-
Познавательные:
-
различать методы познания окружающего мира по его целям (наблюдение, эксперимент, моделирование, вычисление)
-
анализировать результаты элементарных исследований, фиксировать их результаты
-
выделять существенную информацию из текстов разных видов
-
выявлять особенности (качества, признаки) разных объектов в процессе их рассматривания
-
сопоставлять характеристики объектов по одному или нескольким признакам, выявлять сходства и различия объектов
-
выполнять учебные задачи, не имеющие однозначного решения
-
произвольно и осознанно владеть общим приемом решения задач
-
.
. Личностные
-
Формирование стартовой мотивации к изучению нового
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыка осознанного выбора наиболее эффективного способа решения
-
Формирование устойчивой мотивации к индивидуальной деятельности по самостоятельно составленному плану
-
Формирование навыков самоанализа и самоконтроля.
-
Формирование мотивации к самосовершенствованию.
-
Формирование навыков анализа, индивидуального и коллективного проектирования
-
Формирование навыков составления алгоритма выполнения задания, навыков выполнения творческих заданий
-
Формирование интереса к творческой деятельности на основе составленного плана, проекта, модели, образца
5. Календарно-тематическое планирование
задание
корректировка
Глава I Отношение. Пропорции. Проценты
01-04.09
Отношение чисел и величин
п. 1.1 №3,5,7
01-04.09
Отношение чисел и величин
8(а,г), 9(а,б)
05-11.09
Отношение чисел и величин
№12,14,18
05-11.09
Масштаб
п.1.2 №22, 24
05-11.09
Масштаб. Решение задач
№27, 28, 31
05-11.09
Деление числа в данном отношении
п.1.3 №37(а,в), 39
05-11.09
Деление числа в данном отношении
№40, 43
12-18.09
Деление числа в данном отношении
№37(а,г), 38, 44
12-18.09
Пропорции (понятие)
п.1.4 №46(а,б), 47(а,в), 49
12-18.09
Пропорции (свойства)
№46(в,г),47(б), 50(а)
12-18.09
Пропорции
№47(г),48,50 (б)
12-18.09
Пропорции
№53,54,56
19-25.09
Прямая и обратная пропорциональность
п.5 №66,68,69
19-25.09
Прямая и обратная пропорциональность
№70,72,74
19-25.09
Прямая и обратная пропорциональность
№76,77,80
19-25.09
Проценты
п.1.6 №93.95,97(а)
19-25.09
Проценты
№98(б,в),100
26.09-02.10
Проценты
№102(а,в),104, 105,110
26.09-02.10
Задачи на проценты
п.1.7 №120,122,123
26.09-02.10
Задачи на проценты
№126,128, 130(а,в)
26.09-02.10
Задачи на проценты
№124,131(а), 132(б),133
26.09-02.10
Круговые диаграммы
п.1.8 №134,136
03-09.10
Круговые диаграммы
№137,138
03-09.10
Круговые диаграммы
№134,135,139
-
1
03-09.10
Контрольная работа №1
Глава II Целые числа
-
1
03-09.10
Отрицательные целые числа
п.2.1 №193,194
-
2
03-09.10
Отрицательные целые числа
п.2.1 №192,195,196
-
2
10-16.10
Противоположные числа. Модуль числа
п.2.2 №203,204,206
-
3
10-16.10
Противоположные числа. Модуль числа
п.2.2 №205,207,210
-
3
10-16.10
Сравнение целых чисел
п.2.3 №221,226(а,г), 227,228(а-г)
10-16.10
Сравнение целых чисел
№226(б,в), 228(д-ж),230(а)
10-16.10
Сложение целых чисел
п.2.4 №236, 242(б,д), 241
17-23.10
Сложение целых чисел
№242(в,г), 243(а,е), 244
17-23.10
Сложение целых чисел
№245(б,д), 247(а,г),248(а,г)
17-23.10
Сложение целых чисел
№246,248(в,е), 249(а,б), 250(а,г)
17-23.10
Сложение целых чисел
№249(в,г), 250(б,в), 251, 252
17-23.10
Законы сложения
п.2.5 №256, 259, 260
24-30.10
Законы сложения
п.2.5 №253, 254, 255
24-30.10
Разность целых чисел
п.2.6 №274, 275(а-г)
24-30.10
Разность целых чисел
№275(ост), 276(а,в),277(а,б)
24-30.10
Разность целых чисел
№275(ост), 276(б,г)
24-30.10
Разность целых чисел
№277(б,г), 278(чет)
09-13.11
Разность целых чисел
№279(чет), 280(б,г),281
09-13.11
Контрольная работа №2
09-13.11
Произведение целых чисел
п.2.7 293, 294(а,г), 295(а)
09-13.11
Произведение целых чисел
№294(б,в), 295(б),296
09-13.11
Произведение целых чисел
№297, 298(а,г), 303, 307(а,в)
14-20.11
Частное целых чисел
п.2.8 №321, 322(чет), 323(а)
14-20.11
Частное целых чисел
№320,323(б),326
14-20.11
Частное целых чисел
№323(в), 324(а), 331,328
14-20.11
Распределительный закон
п.2.9 №332(а,в), 334(а),338(б)
14-20.11
Распределительный закон
№334(б), 339, 340(а)
21-27.11
Раскрытие скобки и заключение в скобки
п.2.10 №355, 356,362(б,г)
21-27.11
Раскрытие скобок и заключение в скобки
№354, 358,360
21-27.11
Действия с суммой нескольких слагаемых
п.2.11 №367, 369
21-27.11
Действия с суммой нескольких слагаемых
№370, 371,372 (а-г), 373(б,в)
21-27.11
Представление целых чисел на координатной прямой
п.2.12 №378, 379,381
28.11-04.12
Представление целых чисел на координатной прямой
№380, 383
28.11-04.12
Контрольная работа №3
Рациональные числа
28.11-04.12
Отрицательные дроби
п.3.1 №430, 432,433
28.11-04.12
Отрицательные дроби
№435, 437,438
28.11-04.12
Рациональные числа
п.3.2 №447, 449,453
05-11.12
Рациональные числа
№454(а,б), 455,460
05-11.12
Сравнение рациональных чисел
п.3.3 №467, 468,470
05-11.12
Сравнение рациональных чисел
№471,473
05-11.12
Сравнение рациональных чисел
№474,476,483, 484
05-11.12
Сложение и вычитание дробей
п.4.4 №488(а-г), 490(а,б),491(а)
19-25.12
Сложение и вычитание дробей
№492,494,495
19-25.12
Сложение и вычитание дробей
№496(а-г), 497(а),499(б,в)
19-25.12
Сложение и вычитание дробей
№499(д,е), 500(а,б), 501(в), 502(б)
19-25.12
Умножение и деление дробей
п.3.5 №511, 513
19-25.12
Умножение и деление дробей
№514(а,б), 515,518,519(а)
26.12-29.12
Умножение и деление дробей
№520,523,525
26.12-29.12
Умножение и деление дробей
№526,527(а,б), 529(а)
26.12-29.12
Законы сложения и умножения
п.3.6 №537(а,в), 538(а),539(г)
26.12-29.12
Законы сложения и умножения
№540,541(а), 543(а)
12-15.01
Законы сложения и умножения
№537(б,г),539(а)542(б), 545(б)
12-15.01
Контрольная работа №4
12-15.01
Смешанные дроби произвольного знака
п.3.7 п.3.6 №537(а,в), 538(а),539(г)
12-15.01
Смешанные дроби произвольного знака
№555(б), 556(б),557(а)
12-15.01
Смешанные дроби произвольного знака (решение задач)
№558(б,в), 560(а),561(а), 562(б)
16-22.01
Смешанные дроби произвольного знака
№562(а,в), 563(а-г),564(а,в)
16-22.01
Смешанные дроби произвольного знака
№565(в), 566(а),567(б)
16-22.01
Изображение рациональных чисел на координатной прямой
п.3.8 №580, 582,583
16-22.01
Изображение рациональных чисел на координатной прямой
№584(а), 586,588
16-22.01
Изображение рациональных чисел на координатной прямой
№589(а), 592,595
23-29.01
Уравнение
п.3.9 607(а,г,ж), 608(а,г),609(а)
23-29.01
Уравнение
№608(б,д),609(б)610(а,г)
23-29.01
Уравнение
№609(в), 610(б), 611
23-29.01
Уравнение
№611(а),612(б), 613(в)
23-29.01
Решение задач с помощью уравнений
п.3.10 №619, 620,622
30.01-05.02
Решение задач с помощью уравнений
№623,625(а)
30.01-05.02
Решение задач с помощью уравнений
№627(б), 628(а)
30.01-05.02
Решение задач с помощью уравнений
№629(а), 630(б)
№631, 633,636(а)
30.01-05.02
Контрольная работа №5
Глава IV Десятичные дроби
30.01-05.02
Понятие положительной десятичной дроби
п.4.1 №714, 715(а,г,ж),718(б)719(б)
06-12.02
Положительные десятичные дроби (закрепление)
№722, 724, 725,726(а)
06-12.02
Сравнение положительных десятичных дробей
п.4.2 №732, 734,737
06-12.02
Сравнение положительных десятичных дробей
№735, 736,740(а),741(б
06-12.02
Сложение и вычитание положительных десятичных дробей
п.4.3 №749, 750(в),751
06-12.02
Сложение и вычитание положительных десятичных дробей
№753, 756(а),758,763
-
1
13-19.02
Сложение и вычитание положительных десятичных дробей
№754(а),756(б), 757
-
1
13-19.02
Сложение и вычитание положительных десятичных дробей
№750, 754(б),759,763
-
1
13-19.02
Перенос запятой в положительной десятичной дроби
п.4.4 №771, 773,774
-
2
13-19.02
Перенос запятой в положительной десятичной дроби
№775(а,б),776(а,г),777(а),779(б)
13-19.02
Умножение положительных десятичных дробей
п.4.5 №784, 785,787(а-в)
-
2
20-26.02
Умножение положительных десятичных дробей
№787(г-е), 788(а,б),790(а-е)
-
2
20-26.02
Умножение положительных десятичных дробей
№787(ж-и), 788(в,г),790
-
3
20-26.02
Умножение положительных десятичных дробей
№789(а,б), 791(а-г), 792(а,в)
-
3
20-26.02
Деление положительных десятичных дробей
п.4.6 №809(а,б), 817(г,д),818(а-г)
-
3
20-26.02
Деление положительных десятичных дробей
№807(в,е), 808(д,е), 809(в),810(а)
-
3
27.02-5.03
Деление положительных десятичных дробей
№809(г), 810(б), 811(а,г),812(а,г)
27.02-5.03
Контрольная работа №6
27.02-5.03
Десятичные дроби и проценты
п.4.7 №839(а), 840(а),842
27.02-5.03
Десятичные дроби и проценты
№841(а), 843,844
27.02-5.03
Десятичные дроби и проценты
№840(б), 841(б), 845
06-12.03
Десятичные дроби и проценты
№846, 847(а), 848(б)
06-12.03
Сложные задачи на проценты
п.4.8 №850, 854
06-12.03
Сложные задачи на проценты
-
06-12.03
Десятичные дроби любого знака
п.4.9 №870, 871, 873
06-12.03
Десятичные дроби любого знака
№874, 877, 878(а)
13-19.03
Приближение десятичных дробей
п.4.10 №884, 886, 887
13-19.03
Приближение десятичных дробей
№888(а,д,и), 889(а), 890
13-19.03
Приближение десятичных дробей
№885(а), 886(б), 889(б,в)
13-19.03
Приближение суммы, разности, произведения и частного двух чисел
п.4.11 №895(а), 896(б), 898(б)
13-19.03
Приближение суммы, разности, произведения и частного двух чисел
№895(а), 896(а), 897(а)
20-26.03
Приближение суммы, разности, произведения и частного двух чисел
№895(в), №896(в), 897(б), 898(а,б)
20-26.03
Контрольная работа №7
Обыкновенные и десятичные дроби
20-26.03
Разложение положительной обыкновенной дроби в конечную десятичную дробь
п.5.1 №943,944
20-26.03
Разложение положительной обыкновенной дроби в конечную десятичную дробь
№945,947,948
20-26.03
Бесконечные периодические десятичные дроби
п.5.2 №957,958
03-09.04
Бесконечные периодические десятичные дроби
№959,961
03-09.04
Периодичность десятичного разложения обыкновенной дроби
п.5.3*
03-09.04
Непериодические бесконечные десятичные дроби
П.5.4 №973,974
03-09.04
Непериодические бесконечные десятичные дроби
03-09.04
Действительные числа
П.5.5 №990
10-16.04
Длина отрезка
П.5.6 №1003,1005
10-16.04
Длина отрезка
№1006,1008
10-16.04
Длина отрезка
№1009
10-16.04
Длина окружности. Площадь круга
П.5.7 №1011,1012
10-16.04
Длина окружности. Площадь круга
№1015,1017
17-23.04
Длина окружности. Площадь круга
№1023,1025
17-23.04
Координатная ось
П.5.8 №1030,1032
17-23.04
Координатная ось
№1035,1037
17-23.04
Координатная ось
№1036
17-23.04
Декартова система координат на плоскости
П.5.9 №1044,1046
-
1
24-30.04
Декартова система координат на плоскости
№1048,1049
-
2
24-30.04
Декартова система координат на плоскости
№1051,1052
24-30.04
Столбчатые диаграммы и графики
П.5.10 №1053,1055
24-30.04
Столбчатые диаграммы и графики
№1058,1059
24-30.04
Столбчатые диаграммы и графики
№1057
02-07.05
Контрольная работа № 8
Повторение
02-07.05
Итоговая контрольная работа № 9
02-07.05
Повторение
д/з1
02-07.05
Повторение
02-07.05
Повторение
8-14.05
Повторение
8-14.05
Повторение
8-14.05
Повторение
8-14.05
Повторение
15-20.05
Повторение
15-20.05
Повторение
15-20.05
Повторение
15-20.05
Повторение
15-20.05
Повторение
22-25.05
Повторение
22-25.05
Повторение
22-25.05
Повторение
22-25.05
Повторение
22-25.05
Повторение
ИТОГО:
170 часов
Повторение
6. Перечень учебно-методических средств обучения, ЭОР (электронных образовательных ресурсов)
-
С.М. Никольский, М.К. Потапов и др. Математика. Учебник для 6 класса,
М.К. Потапов, А.В. Шевкин. Математика. Дидактические материалы для 6 класса, Просвещение, 2010
-
П.В. Чулков, Е.Ф. Шершнев, О.Ф. Зарапина Математика. Тематические тесты для 6 класса,
-
1С: Образовательная коллекция. Математика. Хитрые задачки,
-
ИПС "Математика в задачах и решениях",
-
Математика 5-6 класс
-
ПМК "Математика. Средняя школа. Ч.1",
-
1С: Школа. Математика, 5-11 кл.
-
Математика: учебник для 6 класса под редакцией Г. В. Дорофеева, И. Ф. Шарыгина.-М.: «Просвещение», 2006.
-
Агаханов Н., Подлипский О. Математические олимпиады Московской области. - М.: Физматкнига, 2006.
-
Горбачев Н. В. Сборник олимпиадных задач по математике. - М.: МЦНМО, 2004.
-
Богомолова О. Б. Логические задачи. - М.: БИНОМ. Лаборатория знаний, 2006.
-
Спивак А. В. Математический кружок 6 - 7 кл. - М.: Посев, 2003.
-
Спивак А. В. Математический праздник. - М.: Бюро Квантум, 2004.
-
Шень А. Игры и стратегии с точки зрения математики. - М.: МЦНМО, 2007.
-
Депман И. Я., Виленкин Н. Я. За страницами учебника математики. - М.: Просвещение, 2003.
-
Гайштут А. Г. Развивающие задачи. - Творческое объединение «Учитель».
-
Джо Камерон. IQ Головоломки. - М.: АСТ: Астрель, 2004.
-
Материалы Всероссийских игровых конкурсов «Кенгуру».
-
Перечень обязательных лабораторных, практических, контрольных и других видов работ
Контрольные работы
составляются из пособия: М.К. Потапов, А.В. Шевкин. Математика. Дидактические материалы для 6 класса:М, Просвещение, 2010
Контрольная работа №1 - стр. 49
Контрольная работа №2 - стр. 51
Контрольная работа №3 - стр. 53
Контрольная работа №4 - стр. 55
Контрольная работа №5 - стр. 57
Контрольная работа №6 - стр. 59
Контрольная работа №7 - стр. 61
-
Критерии и нормы оценки результатов освоения программы обучающимися
Учитель, опираясь на эти рекомендации, оценивает знания и умения учащихся с учетом их индивидуальных особенностей.
-
Содержание и объем материала, подлежащего проверке, определяется программой по математике для средней школы. При проверке усвоения этого материала следует выявлять полноту, прочность усвоения учащимися теории применять ее на практике в знакомых и незнакомых ситуациях.
-
Основными формами проверки знаний и умений учащихся по математике в средней школе письменная контрольная работа и устный опрос.
При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения (их полноту, глубину, прочность, использование в различных ситуациях). Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.
-
Среди погрешностей выделяются ошибки и недочеты:
Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел знаниями, умениями, указанными в программе.
К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний, умений или об отсутствии знаний, не считающихся в соответствии с программой основными. Недочетами также являются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.
Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах - как недочет.
-
Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
Ответ не теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а устное изложение и письменная запись ответа математически грамотны и отличаются последовательностью и аккуратностью.
Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.
-
Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т.е. за ответ выставляется одна из отметок: 5 («отлично»), 4 («хорошо»), 3 («удовлетворительно»), 2 («неудовлетворительно»), 1 («плохо»).
Оценка устных ответов учащихся
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна-две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном, требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
- допущены один-два недочетов при освещении основного содержании ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
- неполно раскрыто содержание материала (содержание изложено элементарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, недостаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовки учащихся» в настоящей программе по математике);
- имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание учеником, большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится если:
- ученик обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Оценка письменных и контрольных работ учащихся
Отметка «5» ставится если:
- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнаний или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
- работа выполнена полностью, но обоснования шагов решения недостаточно (если умения обосновывать рассуждения не являлось специальным объектом проверки);
- допущена одна ошибка или есть две-три недочетов в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится если:
- допущена более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится если:
- допущена существенные ошибки, показавшие, что учащийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится если:
- работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
6. Учитель может повысить:
- отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося;
- за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им каких-либо других заданий.
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
Грубыми считаются ошибки:
-
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
-
незнание наименований единиц измерения;
-
неумение выделить в ответе главное;
-
неумение применять знания, алгоритмы для решения задач;
-
неумение делать выводы и обобщения;
-
неумение читать и строить графики;
-
неумение пользоваться первоисточниками, учебником и справочниками;
-
потеря корня или сохранение постороннего корня;
-
отбрасывание без объяснений одного из них;
-
равнозначные им ошибки;
-
вычислительные ошибки, если они не являются опиской;
-
логические ошибки.
К негрубым ошибкам следует отнести:
-
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
-
неточность графика;
-
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
-
нерациональные методы работы со справочной и другой литературой;
-
неумение решать задачи, выполнять задания в общем виде.
Недочетами являются:
-
нерациональные приемы вычислений и преобразований;
-
небрежное выполнение записей, чертежей, схем, графиков.
-
Список литературы
1. Математика: учебник для 6 класса под редакцией Г. В. Дорофеева, И. Ф. Шарыгина.-М.: «Просвещение», 2006.
-
Агаханов Н., Подлипский О. Математические олимпиады Московской области. - М.: Физматкнига, 2006.
-
Горбачев Н. В. Сборник олимпиадных задач по математике. - М.: МЦНМО, 2004.
-
Богомолова О. Б. Логические задачи. - М.: БИНОМ. Лаборатория знаний, 2006.
-
Спивак А. В. Математический кружок 6 - 7 кл. - М.: Посев, 2003.
-
Спивак А. В. Математический праздник. - М.: Бюро Квантум, 2004.
-
Шень А. Игры и стратегии с точки зрения математики. - М.: МЦНМО, 2007.
-
Депман И. Я., Виленкин Н. Я. За страницами учебника математики. - М.: Просвещение, 2003.
-
Гайштут А. Г. Развивающие задачи. - Творческое объединение «Учитель».
-
Джо Камерон. IQ Головоломки. - М.: АСТ: Астрель, 2004.
-
Материалы Всероссийских игровых конкурсов «Кенгуру».
-
Математика. Книга для учителя. 5-6 классы. Потапов М.К., Шевкин А.В.
1</ Д/з к урокам повторения выбирается из тех номеров учебника и дидактического материала, которые не пройдены за год.