- Учителю
- Рабочая программа по алгебре 8 класс
Рабочая программа по алгебре 8 класс
РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ
8 КЛАСС
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая учебная программа по алгебре составлена для учащихся 8 класса на основе программы «Алгебра 8 класс». Автор А.Г. Мордкович, М:«Мнемозина»,2009г. (Программы. Математика.5-6 классы. Алгебра. 7-9 классы. Алгебра и начала математического анализа. 10-11 классы/авт.-сост. И. И. Зубарева, А.Г. Мордкович.- 2-е изд., испр. и доп.- М.: Мнемозина,2009.-63с.) с учетом рекомендаций СКИРОПК и ПРО, ГИМЦ при УО администрации г. Ставрополя.
В соответствии с федеральным БУП и приказом министерства образования Ставропольского края «Об утверждении примерного учебного плана для общеобразовательных учреждений Ставропольского края» от 07 июня 2012 года №537-пр рабочая программа рассчитана на 3 часа в неделю, всего 105 часов в год. В связи с этим на тему «Обобщающее повторение» добавлено 3 часа. Преподавание ведётся по учебнику «Алгебра 8 кл. в 2ч. Ч.2. Задачник для учащихся общеобразовательных учреждений» под ред. А.Г. Мордковича, М.: «Мнемозина», 2014 г.
Рабочая программа по алгебре соответствует Федеральному компоненту государственного стандарта основного общего образования, учебному плану МБОУ СОШ №28 г. Ставрополя.
Данная программа конкретизирует содержание стандарта, дает распределение учебных часов по разделам курса, последовательность изучения тем и разделов с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся.
Основными проблемами математики являются изучение объектов математических умозаключений и правил их конструирования, вскрытие механизма логических построений, выработка умения формулировать, обосновывать и доказывать суждения, тем самым развивая логическое мышление.
Общеучебные цели:
Создание условия для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки.
Создание условия для умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи.
Формирование умения использовать различные языки математики: словесный, символический, графический.
Формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства.
Создание условия для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность.
Формирование умения использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Создание условия для интегрирования в личный опыт новую, в том числе самостоятельно полученную информацию.
Общепредметные цели:
-
Формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
-
Овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественн0научных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
-
Развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
-
Воспитание средствами математики культуры личности; отношения к математике как части общечеловеческой культуры; знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
В результате изучения курса все учащиеся должны овладеть следующими умениями, задающими уровень обязательной подготовки:
Учащиеся приобретают и совершенствуют опыт:
-
Построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин.
-
Выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнение расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента.
-
Самостоятельной работы с источником информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.
-
Проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений.
-
Самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН
№ п/п
Название раздела
Кол-во
часов
Формы контроля
1
Алгебраические дроби
21
Контрольные работы - 1
Текущий контроль
2
Функция . Свойства квадратного корня
18
Контрольные работы - 1
Текущий контроль
3
Квадратичная функция. Функция .
18
Контрольные работы - 2
Текущий контроль
4
Квадратные уравнения
21
Контрольные работы - 1
Текущий контроль
5
Неравенства
15
Контрольные работы - 1
Текущий контроль
6
Обобщающее повторение
12
Итоговая контрольная работа - 1
СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ
Алгебраические дроби (21 ч)
Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей. Сложение и вычитание алгебраических дробей.
Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Рациональное выражение. Рациональное уравнение. Решение рациональных уравнений (первые представления). Степень с отрицательным целым показателем.
Функция у = . Свойства квадратного корня (18 ч)
Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Функция у = , ее свойства и график. Выпуклость функции. Область значений функции. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа. График функции у =. Формула
Квадратичная функция. Функция у = (18 ч)
Функция у = ах2, ее график, свойства. Функция у = , ее свойства, график. Гипербола. Асимптота. Построение графиков функций у = f(x + I), у = f(x) + m, у = f(x + I) + /га, у = -f(x) по известному графику функции у = f(x). Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций, составленных из функций у = С, у = kx + m, у =, у = ах2 + bх + с, у =, у =
Графическое решение квадратных уравнений.
Квадратные уравнения (21 ч)
Квадратное уравнение. Приведенное (неприведенное) квадратное уравнение. Полное (неполное) квадратное уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата.
Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления).
Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной.
Рациональные уравнения как математические модели реальных ситуаций.
Частные случаи формулы корней квадратного уравнения.
Теорема Виета. Разложение квадратного трехчлена на линейные множители.
Иррациональное уравнение. Метод возведения в квадрат.
Неравенства (15 ч)
Свойства числовых неравенств.
Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства.
Квадратное неравенство. Алгоритм решения квадратного неравенства.
Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств).
Приближенные значения действительных чисел, погрешность приближения, приближение по недостатку и избытку. Стандартный вид числа.
Обобщающее повторение (12 ч)
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ
Учащиеся должны знать/понимать:
-
значение математической науки для решения задач, возникающих в теории и практике;
-
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа;
должны уметь:
-
выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени;
-
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
-
выполнять основные действия с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные выражения рациональных выражений;
-
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
-
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним системы двух линейных уравнений и несложные нелинейные уравнения;
-
решать линейные и квадратные неравенства с одной переменной и их системы;
-
решать текстовые задачи алгебраическим методом, интерпретировать полученные результат, проводить отбор решений, исходя из формулировки задачи;
-
изображать числа точками на координатной прямой;
-
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
-
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;
-
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
-
описывать свойства изученных функций, строить их графики;
-
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать следующие жизненно-практические задачи:
-
самостоятельно приобретать и применять знания в различных ситуациях;
-
работать в группах;
-
аргументировать и отстаивать свою точку зрения;
-
уметь слушать других; извлекать учебную информацию на основе сопоставительного анализа объектов;
-
пользоваться предметным указателем энциклопедий и справочников для нахождения информации
КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
-
работа выполнена полностью;
-
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
-
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
-
допущено не более двух ошибок или более двух - трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
-
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2.Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
-
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
-
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
-
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
-
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
-
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
-
отвечал самостоятельно, без наводящих вопросов учителя;
-
возможны одна - две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
-
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
-
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
-
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
-
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
-
не раскрыто основное содержание учебного материала;
-
обнаружено незнание учеником большей или наиболее важной части учебного материала;
-
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
-
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
-
незнание наименований единиц измерения;
-
неумение выделить в ответе главное;
-
неумение применять знания, алгоритмы для решения задач;
-
неумение делать выводы и обобщения;
-
неумение читать и строить графики;
-
неумение пользоваться первоисточниками, учебником и справочниками;
-
потеря корня или сохранение постороннего корня;
-
отбрасывание без объяснений одного из них;
-
равнозначные им ошибки;
-
вычислительные ошибки, если они не являются опиской;
-
логические ошибки.
3.2. К негрубым ошибкам следует отнести:
-
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
-
неточность графика;
-
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
-
нерациональные методы работы со справочной и другой литературой;
-
неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
-
нерациональные приемы вычислений и преобразований;
-
небрежное выполнение записей, чертежей, схем, графиков.
СПИСОК ЛИТЕРАТУРЫ
-
А. Г. Мордкович, Алгебра. 8 класс: учебник для общеобразовательных учреждений / А. Г. Мордкович. - М.: Мнемозина, 2014.
-
А. Г. Мордкович, Алгебра. 8 класс: задачник для общеобразовательных учреждений. - М.: Мнемозина, 2014.
-
Л. А. Александрова, Алгебра 8 класс: самостоятельные работы для общеобразовательных учреждений. - М.: Мнемозина, 2014.
-
А. Г. Мордкович, Е. Е. Тульчинская Алгебра: тесты для 7-9 классов общеобразовательных учреждений. - М.: Мнемозина, 2008.
-
Алгебра.. 8 класс. Контрольные работы для учащихся общеобразовательных учреждений / Л. А. Александрова ; под ред. А.Г. Мордковича.- М.: Мнемозина, 2014.