- Учителю
- Рабочая программа по алгебре 7 класс ФГОС к учебнику Мордковича 4 часа в неделю
Рабочая программа по алгебре 7 класс ФГОС к учебнику Мордковича 4 часа в неделю
Муниципальное казенное общеобразовательное учреждение
средняя общеобразовательная школа №10
г. Россоши Россошанского муниципального района Воронежской области
«Согласовано»
Руководитель МО
____________/Корецкая Н. И./
Протокол № ___ от
« ___ » августа 2016г.
«Согласовано»
Заместитель директора по УВР
__________/О.А. Светашова/
« __ » августа 2016 г.
«Утверждаю»
Директор МКОУ СОШ №10
____________/А. Г. Климова/
Приказ 179/1 от
« 31 » августа 2016 г.
РАБОЧАЯ ПРОГРАММА
по алгебре
7 «Б» класс
Ступень обучения основное общее образование
Количество часов 4 часа 120 часов
в неделю в год
Составитель: Кулешова Ирина Анатольевна
Программа разработана на основе примерной программы по математике
государственного образовательного стандарта основного общего образования
2016- 2017 учебный год
Пояснительная записка
Рабочая программа для 7 класса разработана, на основании следующих нормативных правовых документов:
-
Закон Российской Федерации «Об образовании».
-
Федеральный компонент государственного образовательного стандарта, утвержденный Приказом Минобразования РФ от 05.03.2004 г. №1089.
-
Приказ Минобразования РФ от 09.03. 2004г. № 1312. Об утверждении федерального базисного учебного плана и примерных учебных планов для общеобразовательных учреждений Российской Федерации, реализующих программы общего образования».
-
Приказ Минобрнауки РФ от 31.12. 2015г. № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Минобрнауки РФ от 17.12.2010 г. № 1897».
-
Региональный базисный учебный план для общеобразовательных учреждений Воронежской области, утвержденный Приказом департамента образования и молодежной политики Воронежской области от 27.06.2012г. №760 и от 31.08.2012г. № 851.
-
Федеральный перечень учебников, утвержденных приказом МОН РФ, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих программы общего образования.
-
Устав МКОУ СОШ № 10 г. Россоши
-
Учебный план МКОУ СОШ №10 на 2016 - 2017 учебный год, утвержденный директором школы. Приказ № 179/1 от 31.08.2016 г.
Рабочая программа составлена на основе примерной Программы основного общего образования по математике (А.А. Кузнецов, М.В. Рыжаков, А.М. Кондаков, М.: «Просвещение», 2010г.), Программы по алгебре И.И. Зубаревой, А.Г. Мордковича к учебнику А.Г. Мордковича и др. (М.: Мнемозина, 2012), в соответствии с Требованиями к результатам основного общего образования, представленными в федеральном государственном образовательном стандарте и ориентирована на использование учебника: Мордкович А.Г. Алгебра. 7 класс: Учебник для учащихся общеобразовательных учреждений. М.: Мнемозина, 2014 г.; Мордкович А.Г., Александрова Л.А. и др. Алгебра. 7 класс: Задачник для учащихся общеобразовательных учреждений. М.: Мнемозина, 2014 г.
Изучение математики в основной школе направлено на достижение следующих целей:
В направлении личностного развития:
-
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
-
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
-
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
-
формирование качеств мышления, необходимых для адаптации в современном информационном обществе.
-
развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении:
-
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
-
развитие представлений о математике как о форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
-
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
В предметном направлении:
-
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
-
развитие представлений о математике как форме описания и методе познания действительности, со здание условий для приобретения первоначального опыта математического моделирования;
-
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
Изучение учебного предмета «Алгебра» направлено на решение следующих задач:
-
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
-
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
-
интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценного функционирования в обществе;
-
развитие логического мышления и речевых умений: умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический);
-
формирование представлений об идеях и методах математики как научной теории, о месте математики в системе наук, о математике как форме описания и методе познания действительности;
-
развитие представлений о математике как части общечеловеческой культуры, воспитание понимания значимости математики для общественного прогресса.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра. Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности - умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Программа составлена с учетом принципа преемственности между основными ступенями обучения: начальной, основной и полной средней школой.
Планируемые предметные результаты освоения алгебры учащимися 7 класса
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов:
В направлении личностного развития:
-
умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
-
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
-
представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
-
креативность мышления, инициатива, находчивость, активность при решении математических задач;
-
умение контролировать процесс и результат учебной математической деятельности;
-
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
В метапредметном направлении:
-
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
-
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
-
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
-
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
-
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
-
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
-
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
-
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
-
первоначальные представления об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.
В предметном направлении:
предметным результатом изучения курса является сформированность следующих умений.
Предметная область «Арифметика»
-
Переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную - в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;
-
выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа, находить в несложных случаях значения степеней с целыми показателями, находить значения числовых выражений;
-
округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых выражений;
-
пользоваться основными единицами длины, массы, времени, скорости, площади, объема, выражать более крупные единицы через более мелкие и наоборот;
-
решать текстовые задачи, включая задачи, связанные с отношением и пропорциональностью величин, с дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
-
устной прикидки и оценки результата вычислений, проверки результата вычисления с использованием различных приемов;
-
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Предметная область «Алгебра»
-
Составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое, выражать из формул одну переменную через остальные;
-
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями, выполнять разложение на множители, выполнять тождественные преобразования рациональных выражений;
-
решать линейные уравнения, системы двух линейных уравнений с двумя переменными;
-
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;
-
изображать числа точками на координатной прямой;
-
определять координаты точки плоскости, строить точки с заданными координатами.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами, нахождения нужной формулы в справочных материалах;
-
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
-
описания зависимостей между физическими величинами соответствующими формулами при исследованиями несложных практических ситуаций.
Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»
-
Проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
-
извлекать информацию, представленную в таблицах, на диаграммах, на графиках, составлять таблицы, строить диаграммы и графики;
-
решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;
-
вычислять средние значения результатов измерений;
-
находить частоту события, используя собственные наблюдения и готовые статистические данные;
-
находить вероятности случайных событий в простейших случаях.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
выстраивания аргументации при доказательстве и в диалоге;
-
распознавания логически некорректных рассуждений;
-
записи математических утверждений, доказательств;
-
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
-
решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;
-
решения учебных и практических задач, требующих систематического перебора вариантов;
-
сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
-
понимания статистических утверждений.
Требования к уровню математической подготовки учащихся.
В результате изучения курса алгебры 7 класса учащиеся должны
знать/понимать:
-
существо понятия математического доказательства; примеры доказательств;
-
существо понятия алгоритма; примеры алгоритмов;
-
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
-
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
-
как потребности практики привели математическую науку к необходимости расширения понятия числа;
-
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
-
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
-
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
-
определение степени с натуральным показателем, свойства степеней;
-
определение одночлена, его стандартный вид;
-
определение многочлена, его стандартный вид;
-
формулы сокращенного умножения;
-
основные функциональные понятия и графики функций у = kx + b, y = kx;
-
определение, свойства, график функции y=x2, понятие о непрерывных и разрывных функциях, функциональную символику;
-
основные способы решения систем линейных уравнений с двумя переменными: метод подстановки, метод алгебраического сложения, графический метод;
уметь:
-
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
-
решать линейные, сводящиеся к ним, системы двух линейных уравнений;
-
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
-
изображать числа точками на координатной прямой;
-
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
-
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
-
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
-
описывать свойства изученных функций, строить их графики;
-
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
-
применять формулы сокращенного умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители, комбинировать различные приемы;
-
сокращать алгебраические дроби;
-
выполнять сложение, вычитание, умножение, возведение в натуральную степень, деление одночлена на одночлен.
-
выполнять действия над степенями с натуральными показателями.
-
выполнять сложение, вычитание, умножение, деление многочленов.
-
строить и читать графики линейной функции, находить наибольшее и наименьшее значения линейной функции на заданном промежутке.
-
находить наибольшее и наименьшее значения функции на заданном промежутке,
-
строить и читать график функции y=x2, «кусочных» функций, решать уравнения графическим способом.
-
решать системы линейных уравнений с двумя переменными
-
применять решение систем линейных уравнений при решении текстовых задач.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-
расчетов, включающих простейшие формулы;
-
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
-
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
-
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
-
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
-
интерпретации графиков реальных зависимостей между величинами.
Содержание учебной программы
Повторение курса математики 6 класса.
1. Математический язык. Математическая модель
Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и о математической модели. Линейные уравнения с одной переменной. Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.
2. Линейная функция
Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки М (a, b) в прямоугольной системе координат. Линейное уравнение с двумя переменными. Решение уравнения ах + by + с = 0. График уравнения. Алгоритм построения графика уравнения ах + by + с = 0. Линейная функция. Независимая переменная (аргумент). Зависимая переменная. График линейной функции. Наибольшее и наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции. Линейная функция у = kx и ее график. Взаимное расположение графиков линейных функций.
3. Системы двух линейных уравнений с двумя переменными
Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки. Метод алгебраического сложения. Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).
4. Степень с натуральным показателем и ее свойства
Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.
5. Одночлены. Арифметические операции над одночленами
Одночлен. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены. Сложение и вычитание одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.
6. Многочлены. Арифметические операции над многочленами
Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных членов многочлена. Стандартный вид многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Квадрат суммы и квадрат разности. Разность квадратов. Разность кубов и сумма кубов. Деление многочлена на одночлен.
7. Разложение многочленов на множители
Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Метод выделения полного квадрата. Понятие алгебраической дроби. Сокращение алгебраической дроби. Тождество. Тождественно равные выражения. Тождественные преобразования.
8. Функция у = х2.
Функция у = х2, ее свойства и график. Функция у = -х2, ее свойства и график. Графическое решение уравнений. Кусочная функция. Чтение графика функции. Область определения функции. Первое представление о непрерывных функциях. Точка разрыва. Разъяснение смысла записи у = f(x). Функциональная символика.
9. Теория вероятностей и статистика.
Представление данных, таблицы, диаграммы. Рассмотреть понятия мода, размах и медиана как статистические характеристики. Введение в теорию вероятностей.
Итоговое повторение курса алгебры 7 класса.
Кроме того, в классе ученики продвинутого уровня будут вовлекаться в дополнительную подготовку к урокам, к олимпиадам различного уровня. Учащиеся будут осваивать материал каждый на своём уровне и в своём темпе.
Место предмета в учебном плане
Базисный учебный план на изучение алгебры в 7 классе основной школы отводит 4 учебных часа в неделю, всего 140 уроков в год.
Распределение учебных часов по разделам программы
п/п
Название темы
Кол-во часов
1
Повторение курса математики 6 класса
6
2
Математический язык. Математическая модель
14
3
Линейная функция
14
4
Системы двух линейных уравнений с двумя переменными
13
5
Степень с натуральным показателем и ее свойства
10
6
Одночлены. Арифметические операции над одночленами
9
7
Многочлены. Арифметические операции над многочленами
19
8
Разложение многочленов на множители
23
9
Функция у = х2
9
10
Теория вероятностей и статистика.
9
11
Итоговое повторение курса алгебры 7 класса.
14
12
Итого
140ч
Контроль уровня обученности
Входная контрольная работа.
Контрольная работа №1 «Математический язык. Математическая модель»
Контрольная работа №2 «Линейная функция»
Контрольная работа №3 «Системы двух линейных уравнений с двумя переменными»
Контрольная работа №4 «Степень с натуральным показателем»
Контрольная работа №5 «Одночлены»
Контрольная работа №6 «Многочлены. Арифметические операции над многочленами»
Контрольная работа №7 «Разложение многочленов на множители»
Контрольная работа №8 «Функция »
Итоговая контрольная работа.
Календарно-тематическое планированиеГл.1. Математический язык. Математическая модель
14
7
Числовые выражения
1
12.09
8
Нахождение значений числовых выражений
1
12.09
9
Нахождение значений алгебраических выражений
1
16.09
10
Числовые и алгебраические выражения
1
16.09
11
Что такое математический язык
1
19.09
12
Символы, правила математического языка
1
19.09
13
Что такое математическая модель
1
23.09
14
Этапы математического моделирования
1
23.09
15
Составление математических моделей
1
26.09
16
Линейное уравнение с одной переменной
1
26.09
17
Линейное уравнение с одной переменной
1
30.09
18
Координатная прямая. Числовые промежутки
1
30.09
19
Подготовка к контрольной работе.
1
03.10
20
Контрольная работа № 1 «Математический язык. Математическая модель»
1
03.10
Гл.2. Линейная функция
14
21
Координатная плоскость
1
07.10
22
Алгоритмы нахождения координат точки на плоскости и точки по её координатам
1
07.10
23
Линейное уравнение с двумя переменными
1
10.10
24
График линейного уравнения
ах + ву + с = 0
1
10.10
25
Решение задач с помощью уравнения с двумя переменными
1
14.10
26
Линейная функция
1
14.10
27
График линейной функции
1
17.10
28
Отыскание наибольшего и наименьшего значений линейной функции на заданном промежутке
1
17.10
29
Прямая пропорциональность и её график
1
21.10
30
Построение и чтение графика функции
у = kх
1
21.10
31
Взаимное расположение графиков линейных функций
1
24.10
32
Линейная функция
1
24.10
33
Обобщающий урок по теме «Линейная функция»
1
28.10
34
Контрольная работа № 2 «Линейная функция»
1
28.10
Гл.3. Системы двух линейных уравнений с двумя переменными.
13
35
Система уравнений
1
31.10
36
Графический метод решения систем уравнений
1
31.10
37
Алгоритм решения системы двух уравнений с двумя переменными методом подстановки
1
11.11
38
Метод подстановки
1
11.11
39
Решение систем уравнений методом подстановки
1
14.11
40
Метод алгебраического сложения
1
14.11
41
Метод алгебраического сложения
1
18.11
42
Решение систем уравнений методом алгебраического сложения
1
18.11
43
Системы двух линейных уравнений как математические модели реальных ситуаций
1
21.11
44
Применение систем линейных уравнений при решении задач
1
21.11
45
Решение задач с помощью систем линейных уравнений
1
25.11
46
Обобщающий урок по теме «Системы двух линейных уравнений»
1
25.11
47
Контрольная работа №3 «Системы двух линейных уравнений»
1
28.11
Гл.4. Степень с натуральным показателем
10
48
Понятие степени с натуральным показателем
1
28.11
49
Таблица основных степеней
1
02.12
50
Свойства степени с натуральным показателем
1
02.12
51
Умножение и деление степеней с одинаковыми основаниями
1
05.12
52
Возведение степени в степень
1
05.12
53
Умножение и деление степеней с одинаковыми показателями
1
09.12
54
Преобразования выражений, содержащих степени
1
09.12
55
Степень с нулевым показателем
1
12.12
56
Обобщающий урок по теме «Степень с натуральным показателем»
1
12.12
57
Контрольная работа № 4 «Степень с натуральным показателем»
1
16.12
Гл.5. Одночлены. Арифметические операции над одночленами
9
58
Понятие одночлена. Стандартный вид одночлена
1
16.12
59
Подобные одночлены. Алгоритм сложения (вычитания) одночленов
1
19.12
60
Сложение и вычитание одночленов
1
19.12
61
Умножение одночленов.
1
23.12
62
Возведение одночлена в натуральную степень.
1
23.12
63
Понятие корректных и некорректных задач
1
26.12
64
Деление одночлена на одночлен
1
26.12
65
Обобщающий урок по теме «Одночлены»
1
13.01
66
Контрольная работа № 5 «Одночлены»
1
13.01
Гл.6. Многочлены. Арифметические операции над многочленами
19
67
Понятие многочлена. Стандартный вид многочлена
1
16.01
68
Приведение многочлена к стандартному виду
1
16.01
69
Правило сложения и вычитания многочленов
1
20.01
70
Правило составления алгебраической суммы многочленов
1
20.01
71
Сложение и вычитание многочленов
1
23.01
72
Правило умножения многочлена на одночлен
1
23.01
73
Умножение многочлена на одночлен
1
27.01
74
Правило умножения многочлена на многочлен
1
27.01
75
Умножение многочленов
1
30.01
76
Арифметические операции над многочленами
1
30.01
77
Квадрат суммы и квадрат разности
1
03.02
78
Квадрат суммы и квадрат разности
1
03.02
79
Разность квадратов
1
06.02
80
Разность квадратов
1
06.02
81
Разность кубов и сумма кубов
1
10.02
82
Разность и сумма кубов
1
10.02
83
Деление многочлена на одночлен
1
13.02
84
Решение задач по теме «Арифметические операции над многочленами»
1
13.02
85
Контрольная работа №6 «Многочлены. Арифметические операции над многочленами»
1
17.02
Гл.7. Разложение многочленов на множители
23
86
Разложение многочлена на множители, зачем оно нужно
1
17.02
87
Алгоритм разложения многочлена на множители способом вынесения за скобки общего множителя
1
20.02
88
Вынесение общего множителя за скобки
1
20.02
89
Разложение на множители вынесением общего множителя за скобки
1
24.02
90
Способ группировки
1
24.02
91
Разложение многочлена на множители способом группировки
1
27.02
92
Разложение многочлена на множители способом группировки
1
27.02
93
Формулы сокращенного умножения (ФСУ)
1
03.03
94
Разложение на множители с помощью формул (a+b)2 и (a-b)2
1
03.03
95
Разложение разности квадратов на множители
1
06.03
96
Разложение на множители разности (суммы) кубов
1
06.03
97
Применение ФСУ к разложению на множители
1
10.03
98
Разложение многочлена на множители с помощью ФСУ
1
10.03
99
Применение различных способов для разложения многочлена на множители
1
13.03
100
Метод выделения полного квадрата
1
13.03
101
Разложение многочленов на множители с помощью комбинации различных приемов
1
17.03
102
Разложение многочленов на множители
1
17.03
103
Разложение многочленов на множители
1
20.03
104
Понятие алгебраической дроби
1
20.03
105
Приемы сокращения алгебраических дробей
1
31.03
106
Сокращение алгебраических дробей
1
31.03
107
Тождества
1
03.04
108
Контрольная работа № 7 «Разложение многочленов на множители»
1
03.04
Гл.8. Функция y = x2
9
109
Функция y = x2 , ее свойства и график
1
07.04
110
Функция y = x2 , ее свойства и график
1
07.04
111
Отыскание наибольших и наименьших значений функции y=x2 на заданных промежутках
1
10.04
112
Алгоритм графического решения уравнений
1
10.04
113
Графическое решение уравнений
1
14.04
114
Что означает в математике запись y = f(x)
1
14.04
115
Кусочные функции. Чтение графика функции
1
17.04
116
Чтение графика функции
1
17.04
117
Контрольная работа № 8 «Функция y = x2»
1
21.04
Гл.8. Теория вероятности и статистика
9
118
Введение в теорию вероятности и статистику, статистические данные в таблицах.
1
21.04
119
Диаграммы
1
24.04
120
Элементы статистики. Среднее арифметическое
1
24.04
121
Медиана.
1
28.04
122
Наибольшее и наименьшее значение.
1
28.04
123
Отклонения. Дисперсия.
1
29.04
124
Размах и мода.
1
05.05
125
Решение задач по теме «Статистические характеристики»
1
05.05
126
Самостоятельная работа по теме «Статистические характеристики»
1
06.05
Итоговое повторение
14
127
Итоговое повторение. Решение уравнений
1
08.05
128
Итоговое повторение . Решение задач с помощью уравнений
1
08.05
129
Итоговое повторение. Линейная функция. Функция y=x2
1
12.05
130
Итоговое повторение. Системы линейных уравнений
1
12.05
131
Итоговое повторение. Решение задач с помощью систем линейных уравнений
1
15.05
132
Итоговое повторение. Степень с натуральным показателем, ее свойства
1
15.05
133
Итоговое повторение. Арифметические операции над одночленами и многочленами
1
19.05
134
Итоговое повторение. ФСУ
1
19.05
135
Итоговое повторение. Разложение многочленов на множители. Сокращение алгебраических дробей
1
22.05
136
Итоговая контрольная работа.
1
22.05
137
Анализ итоговой контрольной работы
1
26.05
138
Решение занимательных задач
1
26.05
139
Решение занимательных задач
1
29.05
140
Обобщение и систематизация знаний
1
29.05
Учебно-методическое обеспечение учебного процесса
Для учителя:
-
Примерная основная образовательная программа образовательного учреждения. Основная школа. Серия: Стандарты второго поколения М: Просвещение. 2011 - 352 с.
-
Примерные программы по учебным предметам. Математика 5-9 классы - 3-е издание, переработанное - М. Просвещение. 2011 - 64 с (Стандарты второго поколения)
-
Федеральный государственный общеобразовательный стандарт основного общего образования (Министерство образования и науки Российской Федерации. М. Просвещение. 2011 - 48 с (Стандарты второго поколения)
-
Примерные программы по учебным предметам. Математика 5-9 классы - 3-е издание, переработанное - М. Просвещение. 2011 - 64 с (Стандарты второго поколения)
-
</Мордкович А. Г. Алгебра. 7 класс. Учебник 2Ч - М.: Мнемозина 2014.
-
Александрова Л.А. Алгебра. 7 класс. Самостоятельные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича - М.:Мнемозина, 2010.
-
Александрова Л.А. Алгебра. 7 класс. Контрольные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича - М.:Мнемозина, 2010.
-
Ершова А.П., Голобородько В.В., Ершова А.С. Самостоятельные и контрольные работы по алгебре для 7 класса. - М.: Илекса, 2005.
-
Зубарева И.И., Мордкович А.Г. Программы. Алгебра. 7-9 классы. Алгебра и начала математического анализа. 10-11 классы. - М.: Мнемозина, 2009.
Для учащихся:
-
Мордкович А. Г. Алгебра. 7 класс. Учебник 2Ч - М.: Мнемозина 2014.
-
Александрова Л.А. Алгебра. 7 класс. Самостоятельные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича - М.:Мнемозина, 2010.
-
Ершова А.П., Голобородько В.В., Ершова А.С. Самостоятельные и контрольные работы по алгебре для 7 класса. - М.: Илекса, 2005.
Интернет - ресурсы:
Сайты для учащихся:
-
Энциклопедия для детей. the800.info/yentsiklopediya-dlya-detey-matematika
-
Энциклопедия по математике www.krugosvet.ru/enc/nauka_i_tehnika/matematika/MATEMATIKA.html
-
Справочник по математике для школьников www.resolventa.ru/demo/demomath.htm
-
Математика он-лайн uchit.rastu.ru
Сайты для учителя:
-
Педсовет, математика pedsovet.su/load/135
-
Учительский портал. Математика www.uchportal.ru/load/28
-
Уроки. Нет. Для учителя математики, алгебры, геометрии www.uroki.net/docmat.htm
-
Электронный учебник и УМК.
-
Я иду на урок математики (методические разработки).www.festival.1september.ru
-
Единая коллекция образовательных ресурсов. school-collection.edu.ru/
-
Федеральный центр информационно - образовательных ресурсов.fcior.edu.ru/
Техническое обеспечение образовательного процесса
Материальное обеспечение кабинетов:
Ноутбук; Проектор; Экран
Программное обеспечение:
Операционная система Windows 98/Me(2000/XP). Текстовый редактор MS Word