- Учителю
- Разработка урока по теме Градусная мера дуги окружности. Теорема о вписанном угле. Урок третий
Разработка урока по теме Градусная мера дуги окружности. Теорема о вписанном угле. Урок третий
Урок № 55
</ Тема: «Градусная мера дуги окружности. Теорема о вписанном угле».
Цель:
-
Систематизация и коррекция знаний и умений обучающихся по данной теме;
-
Отработка навыков решения задач по теме «Градусная мера дуги окружности. Теорема о вписанном угле»;
-
Повторение: Четырехугольники - основные понятия
-
Подготовка к ГИА;
-
Развивать память, внимание и логическое мышление у обучающихся;
-
Вырабатывать трудолюбие, целеустремленность, умение работать в парах.
План урока.
-
Организационные моменты.
Сообщение темы и целей урока.
-
Актуализация знаний и умений обучающихся.
-
Проверка выполнения домашнего задания. (Разбор нерешенных заданий)
-
Проверка знания теоретического материала. Из учебника стр. 187
-
Повторение: Четырехугольники
-
Понятие многоугольника.
-
Виды многоугольников.
-
Понятие четырехугольника.
-
Виды и свойства четырехугольников.
-
Решение задач на повторение.
1. Диагонали прямоугольника АВСD пересекаются в точке О. Найдите угол между диагоналями, если АВО = 30°.
2. В параллелограмме KМNP проведена биссектриса угла МKР, которая пересекает сторону MN в точке Е.
а) Докажите, что треугольник KМЕ равнобедренный.
б) Найдите сторону KР, если МЕ = 10 см, а периметр параллелограмма равен 52 см.
-
Закрепление изученного материала.
Решение задач.Найти: ВЕ и α.
После решения задачи обратить внимание: угол, вершина которого лежит внутри круга, измеряется полусуммой двух дуг, одна из которых заключена между его сторонами, а другая - между продолжениями сторон.
α = (AB + CD).
2) SN = 4;
SP = 9;
SK = 3.
Найти: SR, SQ, α.
После решения задачи обратить внимание: угол, вершина которого лежит вне круга, измеряется полуразностью двух дуг, заключенных между его сторонами.
α = (PQ - NK).3) АС : АВ : СВ = 3 : 7 : 8.
Найти: 1, 2, 3.
4) Окружность проходит через вершины В, С, D трапеции АВСD (АD и ВС - основания) и касается стороны АВ в точке В.
Докажите, что ВD = .
Решение
1) Так как ВС || АD, то 1 = 2.
2) 3 = BED, 4 = BED, 3 = 4.
3) АВD ВСD (по двум углам).
; BD2 = BC ∙ AD;
ВD = .
Задача.
Через конец В диаметра АВ проведена секущая, которая пересекается в точке D с касательной, проведенной через другой конец диаметра А; радиус окружности равен 3 см. Найти длину отрезка касательной АD, если известно, что секущая ВD в точке пересечения с окружностью делится пополам.
Решение1.
3 =
AD,
1 =
AD,
1 =
=
3.
2. АDС: 3 + 4 + АDС = 180°;
Из АВС: 4 = 90° - 1; но 1 = 3, поэтому 4 = 90° - 3.
Имеем 3 + 90° - 3 + АDС = 180°
АDС = 90°.
3. Получили АВС равнобедренный, так как АD - медиана и высота.
4. АВ = АС = 6 см.
№№ 662, 664.
-
Итоги урока.
-
Домашнее задание: вопросы 1-14, с. 187; №№ 665, 669.
№ 669.
Решение
Дано:
Построить: отрезок ХY = .Построение.
1) отложим на произвольной прямой l отрезки EF = АВ и FG = СD.
2) разделим отрезок EG пополам и получим точку H.
3) проведем окружность с центром в точке Н и радиусом ЕН.
4) Из точки F восстановим перпендикуляр m к прямой l и пусть K - любая из точек пересечения m с окружностью.
5) FK - искомый отрезок.
Для желающих.
Через точку пересечения окружности с биссектрисой описанного угла проведена хорда, параллельная одной стороне угла. Докажите, что эта хорда равна другой стороне вписанного угла.
Решение1) Так как DЕ || АВ и ВD - биссектриса угла АВС, то 1 = 2 = 3.
2) 4 = 5 как вписанные, опирающиеся на одну дугу ВD.
3) ВСD = DЕВ (по стороне и двум углам).
4) DЕ = ВС.
4