- Учителю
- Рабочая программа по алгебре для 7 класса (автор А. Г. Мордкович)
Рабочая программа по алгебре для 7 класса (автор А. Г. Мордкович)
РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
1. Математический язык. Математическая модель.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- понятие числового выражения;
- понятие алгебраического выражения, переменная, значения числового выражения, значение выражения с переменными;
- допустимые значения переменных;
- термины: «математический язык», «математическая модель»;
- понятие о трёх этапах математического моделирования.
Уметь:
- выполнять арифметические операции с обыкновенными и десятичными дробями, с положительными и отрицательными числами;
- находить числовые значения арифметических и алгебраических выражений;
- решать линейные уравнения;
- составлять математические модели реальных ситуаций (простейшие случаи);
- описывать реальные ситуации, соответствующие заданной математической моделью;
- реализовывать три этапа математического моделирования в простейших ситуациях.
2. Линейная функция.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- понятия координатной прямой, координатной плоскости, координат точек на прямой и плоскости;
- понятие линейного уравнения с двумя переменными и его решения;
- понятие линейной функции и её углового коэффициента, прямой пропорциональности;
- описание словами алгоритмов построения графиков прямой пропорциональности, линейной функции, линейного уравнения с двумя переменными;
- характеристики взаимного расположения на координатной плоскости графиков двух
линейных функций, заданных аналитически.
Уметь:
- находить координаты точки в координатной плоскости, строить точки по её координатам;
- строить графики уравнений x = a, y = b, y = kx, y = kx + m, ax + by + c = 0$
- преобразовывать линейное уравнение с двумя переменными к виду линейной функции;
- находить точки пересечения графиков двух линейных уравнений, двух линейных функций;
- находить наибольшее и наименьшее значение линейной функции на заданном числовом промежутке.
3. Системы двух линейных уравнений с двумя переменными.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- понятие системы двух линейных уравнений с двумя переменными и её решения;
- описание словами графического метода решения системы, метода подстановки, метода алгебраического сложения.
Уметь:
- определять, является ли заданная пара чисел решением заданной системы уравнений или нет;
- решать систему двух линейных уравнений с двумя переменными графическим способом, методом подстановки, методом алгебраического сложения;
- решать задачи, сводящиеся к системам указанного вида.
4. Степень с натуральным показателем и её свойства.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- понятие степени, основания степени, показателя степени;
- определение an в случае, когда n = 1, и в случае, когда n - натуральное число, отличное от 1;
- определение степени с нулевым показателем;
- свойства степеней.
Уметь:
- вычислять an для любых значений а и любых целых неотрицательных значений n;
- пользоваться таблицей основных степеней;
- использовать свойства степени для вычисления значений арифметических и алгебраических выражений, для упрощения алгебраических выражений.
5. Одночлены. Арифметические операции над одночленами.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- понятие одночлена, стандартного вида одночлена, коэффициента одночлена;
- понятие подобных одночленов;
- термины: «алгоритм», «корректные» и «некорректные» задания;
- описание словами правила арифметических операций над одночленами.
Уметь:
- приводить одночлен к стандартному виду;
- складывать и вычитать подобные одночлены, умножать одночлены, возводить одночлены в натуральную степень;
- представлять заданный одночлен в виде суммы одночленов, в виде степени одночлена;
- делить одночлен на одночлен (в корректных случаях).
6. Многочлены. Арифметические операции над многочленами.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- понятия многочлена, стандартного вида многочлена;
- уметь описать словами правила выполнения арифметических операций над многочленами (сложение, вычитание, умножение многочлена на одночлен, умножение многочлена на многочлен);
- формулы сокращённого умножения и их словесное описание.
Уметь:
- приводить многочлен к стандартному виду;
- складывать и вычитать многочлены, приводить подобные члены, взаимно уничтожать члены многочлена;
- умножать многочлен на одночлен и на многочлен;
- применять формулы сокращенного умножения;
- делить многочлен на одночлен;
- решать уравнения, сводящиеся после выполнения арифметических операций над входящими в их состав многочленами, к уравнению вида ax = b;
- решать соответствующие текстовые задачи.
7. Разложение многочленов на множители.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- понятие разложения многочлена на множители, тождества, тождественно равных выражений, тождественного преобразования выражения;
- описание словами сути метода вынесения общего множителя за скобки, метода группировки;
- формулы разложения на множители, связанные с формулами сокращённого умножения.
Уметь:
- использовать для разложения многочлена на множители метод вынесения общего множителя за скобки, метод группировки, формулы сокращенного умножения, метод выделения полного квадрата;
- использовать метод разложения на множители для решения уравнений, для рационализации вычислений, для сокращения алгебраических дробей.
8. Функция y = x2.
В ходе изучения алгебры в 7 классе учащиеся должны:
Знать:
- график функции y = x2;
- описание словами процесса графического решения уравнений и процесс построения графика кусочной функции;
- смысл функции y = f(x).
Уметь:
- вычислять конкретные значения и построение графика функции y = x2;
- строить графики функций, заданных различными формулами на различных промежутках;
- графически решать уравнения вида f(x) = g(x), где y = f(x) и y = g(x) - известные функции;
- находить наибольшее и наименьшее значения функции y = x2 на заданном промежутке;
- читать графики;
- решать примеры на функциональную символику.
3