- Учителю
- Рабочая программа по геометрии 8 класс
Рабочая программа по геометрии 8 класс
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ СПЕЦИАЛЬНОЕ УЧЕБНО-ВОСПИТАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДЛЯ ДЕТЕЙ И ПОДРОСТКОВ С ДЕВИАНТНЫМ ПОВЕДЕНИЕМ
«Специальное профессиональное училище закрытого типа г. Астрахани»
«Рассмотрено»
Руководитель МО
_________/Некозырева Е.В../
Протокол № ___
от «__»____________20___г.
«Согласовано»
Зам.директора по УПР
_____________/Блинкова И.В../
«__»____________20___г.
«Утверждаю»
И.о.директора Астраханского спец. ПУ
_____________/Митячкин В.Ю./
Приказ № ___ от «__»____20___г.
Рабочая программа
Предмет: геометрия
Класс 8
Профиль: базовый
Всего часов на изучение программы 68
Количество часов в неделю 2
Артемова В.Б.
преподаватель математики
первая квалификационная категория
2014-2015 уч. год
Пояснительная записка
Данная рабочая программа составлена в соответствии с требованиями федерального компонента Государственного образовательного стандарта основного общего образования по математике, Программы общеобразовательных учреждений по геометрии для 7-9 классов, составитель: Т.А.Бурмистрова. - М.: Просвещение , 2009год. Программа соответствует учебнику « Геометрия. 7-9 классы » / Л. С.Атанасян, В. Ф. Бутузов и др.М. : Просвещение, 2011 г.
На преподавание геометрии в 8 классе отведено 2 часа в неделю, всего 68 часов в год.
Цели изучения курса геометрии:
-
развивать пространственное мышление и математическую культуру;
-
учить ясно и точно излагать свои мысли;
-
формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности ,доводить начатое дело до конца;
-
помочь приобрести опыт исследовательской работы.
Задачи курса:
-
научить пользоваться геометрическим языком для описания предметов;
-
начать изучение многоугольников и их свойств, научить находить их площади;
-
ввести теорему Пифагора и научить применять её при решении прямоугольных треугольников;
-
ввести тригонометрические понятия синус, косинус и тангенс угла в прямоугольном треугольнике научить применять эти понятия при решении прямоугольных треугольников;
-
ввести понятие подобия и признаки подобия треугольников, научить решать задачи на применение признаков подобия;
-
ввести понятие вектора , суммы векторов, разности и произведения вектора на число;
-
ознакомить с понятием касательной к окружности
Формы организации учебного процесса:
индивидуальные, групповые, индивидуально-групповые,
фронтальные, классные и внеклассные.
Формы контроля:
Самостоятельная работа, контрольная работа, тест, математический диктант
Учебно-тематический план
главы
Название главы
Количество часов
Количество контрольных работ
5
ЧЕТЫРЁХУГОЛЬНИКИ
14
1
6
ПЛОЩАДЬ
14
1
7
ПОДОБНЫЕ ТРЕУГОЛЬНИКИ
19
1
8
ОКРУЖНОСТЬ
17
1
ПОВТОРЕНИЕ
4
-
ВСЕГО
68
4
СОДЕРЖАНИЕ ОБУЧЕНИЯ
Четырехугольники
Многоугольник, выпуклый многоугольник, четырёхугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Осевая и центральна симметрия.
Основная цель - изучить наиболее важные виды четырёхугольников: параллелограмм, прямоугольник, квадрат, ромб, трапеция; дать представление о фигурах, обладающих осевой и центральной симметрией.
Площадь
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Основная цель - расширить и углубить представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из самых главных теорем геометрии - теорему Пифагора.
Подобные треугольники
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Основная цель- ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Окружность и круг
Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.
Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.
Основная цель- расширить сведения об окружности, изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.
Повторение
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ
В результате изучения геометрии ученик должен уметь:
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, используя определения, свойства, признаки; изображать планиметрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования планиметрических фигур;
вычислять значения геометрических величин (длин, углов, площадей, ), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них; решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; решать простейшие планиметрические задачи в пространстве; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания реальных ситуаций на языке геометрии; расчетов, включающих простейшие тригонометрические формулы; решения геометрических задач с использованием тригонометрии решения практических задач, связанных с нахождением геометрических величин - длин, площадей основных геометрических фигур (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Учебно-методическое обеспечение
1. Примерные программы для общеобразовательных учреждений по геометрии для 7 -9 классов, составитель Бурмистрова Т.А. -М.: Просвещение, 2009 г.
2. Геометрия. 7-9классы, Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др. / учебник для общеобразовательных учреждений/ . -М. : Просвещение, 2011 г.
3. Федеральный компонент государственного образовательного стандарта общего образования по математике.
-
Зив Б.Г. Дидактические материалы по геометрии для 8 класса - М.: Просвещение, 2008 г.
5.Самостоятельные и контрольные работы по геометрии для 8 класса- М.: Илекса, 2008 г.
Календарно-тематическое планирование
Уроков геометрии
(предмет)
Классы:_____8 класс___________________________________________________
Учитель:___________Дёмина Светлана Владимировна____________________
Кол-во часов за год:
Всего _____70___________________
В неделю ____2 часа_________
Плановых контрольных работ:____5___, самостоятельных и практических работ: _ , тестов: 6
Планирование составлено на основе программы общеобразовательных учреждений: Геометрия 7-9 кл./ Сост. Т.А.Бурмистрова - М.: Просвещение, 2008, рекомендованная Департаментом образовательных программ и стандартов общего образования МО РФ
Учебник__ Геометрия, 7 - 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2006
Рабочая тетрадь. Геометрия: рабочая тетрадь для 8 класса общеобразовательных учреждений. Л.С. Атанасян, В.Ф. Бутузов- М. Просвещение 2009г
Цели изучения курса:
--развивать пространственное мышление и математическую культуру;
-учить ясно и точно излагать свои мысли ;
-формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности ,доводить начатое дело до конца;
-помочь приобрести опыт исследовательской работы.
Задачи курса:
-научить пользоваться геометрическим языком для описания предметов;
-начать изучение многоугольников и их свойств, научить находить их площади;
-ввести теорему Пифагора и научить применять её при решении прямоугольных треугольников;
-ввести тригонометрические понятия синус, косинус и тангенс угла в прямоугольном треугольнике научить применять эти понятия при решении прямоугольных треугольников;
-ввести понятие подобия и признаки подобия треугольников, научить решать задачи на применение признаков подобия;
Учебно-методический комплект
Геометрия, 7 - 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2006.
Рабочая тетрадь. Геометрия: рабочая тетрадь для 8 класса общеобразовательных учреждений. Л.С. Атанасян, В.Ф. Бутузов- М. Просвещение 2009г
Л.С. Атанасян, В.Ф. Бутузов Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. - М.: Просвещение, 2003.
Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 - 11 классов. - М.: Просвещение, 2003.
Б.Г. Зив, В.М. Мейлер, Дидактические материалы по геометрии для 8 класса. -М.; Просвещение, 2005г
С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. - М.: Просвещение, 2001.
Научно-теоретический и методический журнал «Математика в школе»
Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика
Единый государственный экзамен 2006-2010. математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.:Интеллект-Цент, 2005-2010.
Учитель: Дёмина С.В.