- Учителю
- Рабочая программа по математике 5 класс по Виленкину
Рабочая программа по математике 5 класс по Виленкину
1. Пояснительная записка.
Рабочая программа основного общего образования по математике для 5-6 классов составлена на основе Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897, сборника рабочих программ по математике 5-6 слассов, ориентирована на использование учебника Н.Я. Виленкина, В.И. Жохова и др. (М.: Мнемозина) и Положения о рабочей программе педагога, реализующего ФГОС второго поколения МБОУ «Баррикадская средняя общеобразовательная школа».
Сознательное овладение учащимися системой арифметических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса математики 5-6 классов обусловлена тем, что объектом изучения служат количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика - язык науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Арифметика является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно - научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении математике в 5-6 классах способствует усвоению предметов гуманитарного цикла. Практические умения и навыки арифметического характера необходимы для трудовой и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении арифметических абстракций, о соотношении реального и идеального, о характере отражения математической наукой явлений и процессов реального мира, о месте арифметики в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности воображения, арифметика развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность
принимать самостоятельные решения. Активное использование и решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.
Изучение математики в 5-6 классах позволяет формировать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобретают навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса арифметики является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в арифметике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Показывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, арифметика вносит значительный вклад в эстетическое воспитание учащихся.
2. Общая характеристика курса математики в 5-6 классах
В курсе математики 5-6 классов можно выделить следующие основные содержательные линии: арифметика; элементы алгебры; вероятность и статистика; наглядная геометрия. Наряду с этим в содержание включены две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия - «Множества» - служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая - «Математика в историческом развитии» - способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.
Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.
Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы формирования пра
Линия «Вероятность и статистика» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности - умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении вероятности и статистики обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
3. Место курса математики в 5-6 классах в учебном плане
Данная программа предназначена для 5-6 классов общеобразовательных школ. Она рассчитана на 350 часов: 5 часов в неделю в 5 классе (175 часов), 5 часов в неделю в 6 классе (175 часов).
Рабочая программа рассчитана на 175 часов, 5 часов в неделю, 35 учебных недель. Авторское планирование рассчитано на 34 недели - 170 часов, поэтому добавлено еще 5 часов, которые распределены следующим образом: 3 часа отведены на повторение и вводную контрольную работу в начале учебного года, 2 часа на повторение и итоговую контрольную работу за первое полугодие.
При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей их реализацией.
4. Описание ценностных ориентиров содержания учебного предмета
На основании требований Государственного образовательного стандарта в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:
-
приобретение математических знаний и умений;
-
овладение обобщенными способами мыслительной, творческой деятельностей;
-
освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.
Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное самосознание, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и компетенциями. Это определило цели обучения математике:
-
в направлении личностного развития:
-
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
-
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
-
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
-
развитие логического мышления, пространственного воображения, алгоритмической культуры, интереса к математическому творчеству и математических способностей, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
-
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне;
-
воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
-
в метапредметном направлении:
-
формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
-
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
-
в предметном направлении:
-
овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
-
создания фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
5. Личностные, метапредметные и предметные результаты освоения содержания курса
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
личностные:
1) ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
2) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
3) умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
4) первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
5) критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
6) креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
7) умения контролировать процесс и результат учебной математической деятельности;
8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
1) способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
2) умения осуществлять контроль по образцу и вносить необходимые коррективы;
3) способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
4) умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
5) умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
6) развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
7) формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
8) первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
9) развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
10) умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
11) умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
12) умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
13) понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
14) умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
15) способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
2) владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
3) умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
4) умения пользоваться изученными математическими формулами;
5) знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
6) умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
6. Содержание учебного курса математики в 5 - 6 классах
АРИФМЕТИКА
Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Понятие о степени с натуральным показателем. Квадрат и куб числа. Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами. Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9,10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.
Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Отношение. Пропорция; основное свойство пропорции. Проценты; нахождение процентов от величины и величины по её процентам; выражение отношения в процентах. Решение текстовых задач арифметическими способами.
Рациональные числа. Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа. Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий.
Измерения, приближения, оценки. Зависимости между величинами. Единицы измерения длины, площади, объёма, массы, времени, скорости. Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам. Решение текстовых задач арифметическими способами.
ЭЛЕМЕНТЫ АЛГЕБРЫ
Использование букв для обозначения чисел; для записи свойств арифметических действий. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий. Декартовы координаты на плоскости. Построение точки по её координатам, определение координат точки на плоскости.
ОПИСАТЕЛЬНАЯ СТАТИСТИКА. ВЕРОЯТНОСТЬ. КОМБИНАТОРИКА. МНОЖЕСТВА
Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. Решение комбинаторных задач перебором вариантов. Множество, элемент множества. Пустое множество. Подмножество. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера -Венна.
НАГЛЯДНАЯ ГЕОМЕТРИЯ
Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырёхугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины. Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Равновеликие фигуры. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса. Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ
История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.
8. Учебно-методическое обеспечение и материально-техническое обеспечение образовательного процесса:
1. Федеральный государственный образовательный стандарт основного общего образования.
2. Математика. Сборник рабочих программ. 5-6 классы. Сост. Т.А. Бурмистрова - М.: Просвещение, 2015
2. Математика. 5 класс. Учебник для общеобразовательных учреждений. Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. -М.:Мнемозина, 2014.
3. Математика. 5 класс: технологические карты уроков по учебнику Н.Я. Виленкина, В.И. Жохова, А.С. Чеснокова, С.И. Шварцбурда - Волгоград: Учитель, 2016
4. Попов М.А. Дидактические материалы по математике. 5 класс. К учебнику Н.Я.Виленкина и др. -Экзамен, 2014.
5. Попов М.А. Контрольные и самостоятельные работы по математике. 5 класс. К учебнику Н.Я.Виленкина и др. -Экзамен, 2014.
6. Попова Л.П. Контрольно-измерительные материалы. Математика 5 класс. - М.: ВАКО, 2014
7. Попова Л.П. Поурочные разработки по матиматике. 5 класс - М.: ВАКО, 2014
Информационно - коммуникативные средства:
1. Мультимидийное приложение к поурочному планированию. Презентации к уроку по учебнику Н.Я. Виленкина и др. «Математика. 5 класс» (CD).
Технические средства обучения:
1. Мультимедийный аппарат
2. Компьютер.
Наглядные пособия:
1. Портреты великих ученых-математиков.
2. Демонстрационные таблицы по темам: «Десятичные дроби», «Сложение и вычитание дробей с разными знаменателями», «Действия со смешанными числами», «Координатные прямые», «Целое и часть», «Простые числа от 2 до 997», «Свойства сложения и умножения».
Контрольные работы, проводимые в 5 классе
Программой отводится на изучение математики в 5 классе по 5 уроков в неделю, что составляет 175 часов в учебный год. Из них 1 час отведен на вводную контрольную работу, 1 час на итоговую контрольную работу за первое полугодие, на итоговую контрольную работу за год, 13 часов контрольных работ, которые распределены по разделам следующим образом:
Вводная контрольная работа
Контрольная работа №1 по теме «Обозначение натуральных чисел»
Контрольная работа №2 по теме «Сложение и вычитание натуральных чисел»
Контрольная работа №3 по темам «Числовые и буквенные выражения», «Уравнение»
Контрольная работа по теме №4 по теме «Умножение и деление натуральных чисел»
Контрольная работа №5 по теме «Упрощение выражений»
Контрольная работа № 6 по теме «Площади и объемы»
Итоговая контрольная работа за первое полугодие
Контрольная работа №7 по теме «Доли. Обыкновенные дроби»
Контрольная работа №8 по теме «Сложение и вычитание дробей с одинаковыми знаменателями и смешанных чисел»
Контрольная работа № 9 по теме «Сложение и вычитание десятичных дробей»
Контрольная работа №10 по теме «Умножение и деление десятичных дробей на натуральные числа»
Контрольная работа №11 по теме «Умножение и деление десятичных дробей»
Контрольная работа №12 по теме «Проценты»
Контрольная работа №13 по теме «Измерение углов. Транспортир»
Итоговая контрольная работа за год