- Учителю
- Рабочая программа по химии
Рабочая программа по химии
Муниципальное бюджетное общеобразовательное учреждение
города Иркутска средняя общеобразовательная школа № 57
Рабочая программа
по химии для 11 класса
(уровень: базовый, общеобразовательный)
Учитель: Лобанова Ольга Васильевна,
первая квалификационная категория
2015/2016 учебный год
Пояснительная записка.
Рабочая программа курса химии 11 класса разработана на основе Примерной программы среднего (полного) общего образования по химии (базовый уровень), Программы курса химии для 11 класса общеобразовательных учреждений (базовый уровень), автор О.С. Габриелян, 2010, и государственного образовательного стандарта.
Программа рассчитана на 34 часа (1 час в неделю), в том числе для проведения
контрольных работ - 2 часа, практических работ - 2 часа.
В рабочей программе отражены: обязательный минимум содержания основных образовательных программ, требования к уровню подготовки учащихся, заданные федеральным компонентом государственного стандарта общего образования.
Формы организации учебного процесса:
-
индивидуальные;
-
групповые;
-
индивидуально-групповые;
-
фронтальные;
-
практикумы.
Формы контроля ЗУН (ов);
-
наблюдение;
-
беседа;
-
фронтальный опрос;
-
опрос в парах;
-
практикум.
Цели и задачи рабочей программы:
-
освоение знаний о химической составляющей естественно-научной картины мира, важнейших понятиях, законах, теориях.
-
овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов.
-
развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения знаний с использованием различных источников информации, в том числе компьютерных;
-
воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде.
-
применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.
Планируемые результаты обучения:
Выпускник научится:
-
описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;
-
характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
-
раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», используя знаковую систему химии;
-
изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
-
сравнивать по составу оксиды, основания, кислоты, соли;
-
классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
-
пользоваться лабораторным оборудованием и химической посудой;
-
проводить химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
-
различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.
-
раскрывать смысл периодического закона Д. И. Менделеева;
-
описывать и характеризовать табличную форму периодической системы химических элементов;
-
характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
-
различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
-
изображать электронно-ионные формулы веществ, образованных химическими связями разного вида;
-
выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических;
-
характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
-
характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева; • объяснять суть химических процессов и их принципиальное отличие от физических;
-
называть признаки и условия протекания химических реакций;
-
устанавливать принадлежность химической реакции к определённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительно-восстановительные); 4) по обратимости процесса (реакции обратимые и необратимые);
-
составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращённые ионные уравнения реакций обмена; уравнения окислительно-восстановительных реакций;
-
прогнозировать продукты химических реакций по формулам/названиям исходных веществ; определять исходные вещества по формулам/названиям продуктов реакции;
-
составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ и органических веществ различных классов;
-
выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
-
приготовлять растворы с определённой массовой долей растворённого вещества;
-
определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
-
проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных ионов
-
определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
-
составлять формулы веществ по их названиям;
-
составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
-
объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
-
называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей, оксидов;
-
определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
-
составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций;
-
проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;
Выпускник получит возможность научиться:
-
грамотно обращаться с веществами в повседневной жизни;
-
осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
-
понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
-
использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
-
развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
-
объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.
-
осознавать значение теоретических знаний для практической деятельности человека;
-
описывать изученные объекты как системы, применяя логику системного анализа;
-
применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
-
развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.
-
составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
-
приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических и органических веществ;
-
прогнозировать результаты воздействия различных факторов на изменение скорости химической реакции;
-
прогнозировать результаты воздействия различных факторов на смещение химического равновесия.
-
•прогнозировать химические свойства веществ на основе их состава и строения;
-
прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
-
выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество - оксид - гидроксид - соль;
-
организовывать, проводить ученические проекты по исследованию свойств веществ, имеющих важное практическое значение.
Учебно-методический комплект:
1. Габриелян О.С. Химия. 11 класс: учебник для общеобразовательных учреждений. - М.:Дрофа, 2009, 2010.
2. Габриелян О.С., Настольная книга учителя. Химия. 11 класс. - М.: Дрофа, 2008.
MULTIMEDIA - поддержка курса:
Интернет - ресурсы:
Структура программы по химии в 11 классе (1 час в неделю, всего 34 часа).
№
Название темы
Количество часов по программе
Количество часов по моей программе
Раздел «Общая химия»
25 часов
23 часа
1
Строение атома и Периодический закон Д.И. менделеева
3 часа.
3 часа.
2
Строение вещества
14 часов
10 часов
3
Химические реакции
8 часов.
10 часов.
Раздел «Неорганическая химия»
9 часов
11 часов
4
Вещества и их свойства
9 часов.
11 часов.
ВСЕГО
34 часа
34 часа.
В авторскую программу внесены следующие изменения:
-
Увеличено число часов на изучение тем:
-
Тема «Вещества и их свойства» вместо 9 - 11 часов
-
Тема «Химические реакции» вместо 8 - 10 часов
Так как данные темы часто встречаются в КИМах ЕГЭ.
2. Сокращено число часов на изучение тем:
-
Тема «Строение вещества» вместо 14 часов - 10 часов;
3. Из авторской программы исключена часть учебного материала, который отсутствует в обязательном минимуме содержания основных образовательных программ для основной школы, также исключены некоторые демонстрационные опыты и лабораторные работы из-за недостатка времени на их выполнение при 2 часах в неделю, так как авторская программа предусматривает 2/3 часа в неделю.
4. Практические работы перенесены в соответствующие темы курса.
-
Конкретные требования к уровню подготовки выпускников определены для каждого урока и включены в поурочное планирование.
Поурочно-тематический план по объему скорректирован в соответствии с федеральным компонентом государственного образовательного стандарта основного общего образования и требованиями, предъявляемыми к уровню подготовки выпускников основной школы и включает вопросы теоретической и практической подготовки учащихся.
Учебно-тематический план
№
название раздела (темы)
кол-во
часов
содержание раздела (темы)
формы контроля
Раздел «Общая химия»
23
Тест в формате ЕГЭ
Строение атома и периодический закон Д. И. Менделеева
3
Основные сведения о строении атома. Ядро: протоны и нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень. Особенности строения электронных оболочек атомов элементов 4-го и 5-го периодов периодической системы Д. И. Менделеева (переходных элементов). Понятие об орбиталях. s- и р-орбитали. Электронные конфигурации атомов химических элементов.
Периодический закон Д.И. Менделеева в свете учения о строении атома.
Открытие Д. И. Менделеевым периодического закона. Периодическая система химических элементов Д. И. Менделеева - графическое отображение периодического закона. Физический смысл порядкового номера элемента, номера периода и номера группы. Валентные электроны. Причины изменения свойств элементов в периодах и группах (главных подгруппах).
Положение водорода в периодической системе. Значение периодического закона и периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.
Демонстрации. Различные формы периодической системы химических элементов Д. И. Менделеева.
Самостоятельная работа
Строение вещества
10
Ионная химическая связь. Катионы и анионы. Классификация ионов. Ионные кристаллические решетки. Свойства веществ с этим типом кристаллических решеток.
Ковалентная химическая связь. Электроотрицательность. Полярная и неполярная ковалентные связи. Диполь. Полярность связи и полярность молекулы. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с этими типами кристаллических решеток.
Металлическая химическая связь. Особенности строения атомов металлов. Металлическая химическая связь и металлическая кристаллическая решетка. Свойства веществ с этим типом связи.
Водородная химическая связь. Межмолекулярная и внутримолекулярная водородная связь. Значение водородной связи для организации структур биополимеров.
Полимеры. Пластмассы: термопласты и реактопласты, их представители и применение. Волокна: природные (растительные и животные) и химические (искусственные и синтетические), их представители и применение.
Газообразное состояние вещества. Три агрегатных состояния воды. Особенности строения газов. Молярный объем газообразных веществ.
Примеры газообразных природных смесей: воздух, природный газ. Загрязнение атмосферы (кислотные дожди, парниковый эффект) и борьба с ним. Представители газообразных веществ: водород, кислород, углекислый газ, аммиак, этилен. Их получение, собирание и распознавание.
Жидкое состояние вещества. Вода. Потребление воды в быту и на производстве. Жесткость воды и способы ее устранения. Минеральные воды, их использование в столовых и лечебных целях.
Жидкие кристаллы и их применение.
Твердое состояние вещества. Аморфные твердые вещества в природе и в жизни человека, их значение и применение. Кристаллическое строение вещества.
Дисперсные системы. Понятие о дисперсных системах. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем в зависимости от агрегатного состояния дисперсной среды и дисперсионной фазы. Грубодисперсные системы: эмульсии, суспензии, аэрозоли.
Тонкодисперсные системы: гели и золи.
Состав вещества и смесей. Вещества молекулярного и немолекулярного строения. Закон постоянства состава веществ.
Понятие «доля» и ее разновидности: массовая (доля элементов в соединении, доля компонента в смеси - доля примесей, доля растворенного вещества в растворе) и объемная. Доля выхода продукта реакции от теоретически возможного.
Демонстрации. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молекулы ДНК. Образцы пластмасс (фенолоформальдегидные, полиуретан, полиэтилен, полипропилен, поливинилхлорид) и изделия из них. Образцы волокон (шерсть, шелк, ацетатное волокно, капрон, лавсан, нейлон) и изделия из них. Образцы неорганических полимеров (сера пластическая, кварц, оксид алюминия, природные алюмосиликаты). Модель молярного объема газов. Три агрегатных состояния воды. Образцы накипи в чайнике и трубах центрального отопления. Жесткость воды и способы ее устранения. Приборы на жидких кристаллах. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля.
Лабораторные опыты. 2. Определение типа кристаллической решетки вещества и описание его свойств. 3. Ознакомление с коллекцией полимеров: пластмасс и волокон и изделия из них. 4. Испытание воды на жесткость. Устранение жесткости воды. 5. Ознакомление с минеральными водами. 6. Ознакомление с дисперсными системами. Практическая работа №1. Получение, собирание и распознавание газов.
Самостоятельная работа
Химические реакции
Реакции, идущие без изменения состава веществ. Аллотропия и аллотропные видоизменения. Причины аллотропии на примере модификаций кислорода, углерода и фосфора. Озон, его биологическая роль. Изомеры и изомерия.
Реакции, идущие с изменение состава вещества. Реакции соединения, разложения, замещения и обмена в неорганической и органической химии. Реакции экзо- и эндотермические. Тепловой эффект химической реакции и термохимические уравнения. Реакции горения, как частный случай экзотермических
реакций.
Скорость химической реакции. Зависимость скорости химической реакции от природы реагирующих веществ, концентрации, температуры, площади поверхности соприкосновения и катализатора. Реакции гомо- и гетерогенные. Понятие о катализе и катализаторах. Ферменты как биологические катализаторы, особенности их функционирования.
Обратимость химических реакций. Необратимые и обратимые химические реакции. Состояние химического равновесия для обратимых химических реакций. Способы смещения химического равновесия на примере синтеза аммиака. Понятие об основных научных принципах производства на примере синтеза аммиака или серной кислоты.
Роль воды в химической реакции. Истинные растворы. Растворимость и классификация веществ по этому признаку: растворимые, малорастворимые и нерастворимые вещества.
Электролиты и неэлектролиты. Электролитическая диссоциация. Кислоты, основания и соли с точки зрения теории электролитической диссоциации.
Химические свойства воды; взаимодействие с металлами, основными и кислотными оксидами, разложение и образование кристаллогидратов. Реакции гидратации в органической химии.
Гидролиз органических и неорганических соединений. Необратимый гидролиз. Обратимый гидролиз солей. Гидролиз органических соединений и его практическое значение для получения гидролизного спирта и мыла. Биологическая роль гидролиза в пластическом и энергетическом обмене веществ и энергии в клетке.
Окислительно-восстановительные реакции. Степень окисления. Определение степени окисления по формуле соединения. Понятие об окислительно-восстановительных реакциях. Окисление и восстановление, окислитель и восстановитель.
Электролиз. Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза. Электролитическое получение алюминия.
Демонстрации. Превращение красного фосфора в белый. Озонатор. Модели молекул н-бутана и изобутана. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми гранулами цинка и взаимодействия одинаковых кусочков разных металлов (магния, цинка, железа) с соляной кислотой. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода с помощью катализатора (оксида марганца (IV)) и каталазы сырого мяса и сырого картофеля. Примеры необратимых реакций, идущих с образованием осадка, газа или воды. Взаимодействие лития и натрия с водой. Получение оксида фосфора (V) и растворение его в воде; испытание полученного раствора лакмусом. Образцы кристаллогидратов. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Гидролиз карбида кальция. Гидролиз карбонатов щелочных металлов и нитратов цинка или свинца (II). Получение мыла. Простейшие окислительно-восстановительные реакции; взаимодействие цинка с соляной кислотой и железа с раствором сульфата меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.
Лабораторные опыты. 7. Реакция замещения меди железом в растворе медного купороса. 8. Реакции, идущие с образованием осадка, газа и воды. 9. Получение кислорода разложением пероксида водорода с помощью оксида марганца (IV) и каталазы сырого картофеля. 10. Получение водорода взаимодействием кислоты с цинком.
Самостоятельная работа
Вещества и их свойства
Металлы. Взаимодействие металлов с неметаллами (хлором, серой и кислородом). Взаимодействие щелочных и щелочноземельных металлов с водой. Электрохимический ряд напряжений металлов. Взаимодействие металлов с растворами кислот и солей. Алюминотермия. Взаимодействие натрия с этанолом и фенолом.
Коррозия металлов. Понятие о химической и электрохимической коррозии металлов. Способы защиты металлов от коррозии.
Неметаллы. Сравнительная характеристика галогенов как наиболее типичных представителей неметаллов. Окислительные свойства неметаллов (взаимодействие с металлами и водородом). Восстановительные свойства неметаллов (взаимодействие с более электроотрицательными неметаллами и сложными веществами-окислителями).
Кислоты неорганические и органические. Классификация кислот. Химические свойства кислот: взаимодействие с металлами, оксидами металлов, гидроксидами металлов, солями, спиртами (реакция этерификации). Особые свойства азотной и концентрированной серной кислоты.
Основания неорганические и органические. Основания, их классификация. Химические свойства оснований: взаимодействие с кислотами, кислотными оксидами и солями. Разложение нерастворимых оснований.
Соли. Классификация солей: средние, кислые и основные. Химические свойства солей: взаимодействие с кислотами, щелочами, металлами и солями. Представители солей и их значение. Хлорид натрия, карбонат кальция, фосфат кальция (средние соли); гидрокарбонаты натрия и аммония (кислые соли); гидроксокарбонат меди (II) - малахит (основная соль).
Качественные реакции на хлорид-, сульфат-, и карбонат-анионы, катион аммония, катионы железа (II) и (III).
Генетическая связь между классами неорганических и органических соединений. Понятие о генетической связи и генетических рядах. Генетический ряд металла. Генетический ряд неметалла. Особенности генетического ряда в органической химии.
Демонстрации. Коллекция образцов металлов. Взаимодействие натрия и сурьмы с хлором, железа с серой. Горение магния и алюминия в кислороде. Взаимодействие щелочноземельных металлов с водой. Взаимодействие натрия с этанолом, цинка с уксусной кислотой. Алюминотермия. Взаимодействие меди с концентрированной азотной кислотой. Результаты коррозии металлов в зависимости от условий ее протекания. Коллекция образцов неметаллов. Взаимодействие хлорной воды с раствором бромида (иодида) калия. Коллекция природных органических кислот. Разбавление концентрированной серной кислоты. Взаимодействие концентрированной серной кислоты с сахаром, целлюлозой и медью. Образцы природных минералов, содержащих хлорид натрия, карбонат кальция, фосфат кальция и гидроксокарбонат меди (II). Образцы пищевых продуктов, содержащих гидрокарбонаты натрия и аммония, их способность к разложению при нагревании. Гашение соды уксусом. Качественные реакции на катионы и анионы.
Лабораторные опыты. 12. Испытание растворов кислот, оснований и солей индикаторами. 13. Взаимодействие соляной кислоты и раствора уксусной кислоты с металлами. 14. Взаимодействие соляной кислоты и раствора уксусной кислоты с основаниями. 15. Взаимодействие соляной кислоты и раствора уксусной кислоты с солями. 16. Получение и свойства нерастворимых оснований. 17. Гидролиз хлоридов и ацетатов щелочных металлов. 18. Ознакомление с коллекциями: а) металлов; б) неметаллов; в) кислот; г) оснований; д) минералов и биологических материалов, содержащих некоторые соли.
Практическая работа №2. Решение экспериментальных задач на идентификацию органических и неорганических соединений.
Тестовая работа в формате ЕГЭ
При подготовке учащимся рекомендуется использовать следующую литературу и интернет - ресурсы:
-
Аликберова Л. Ю. Рукк Н. С. Полезная химия Задачи и истории. - М.: Дрофа, 2003. - 304.
-
Аликберова Л.Ю. «Занимательная химия», М, «АСТ - Пресс», 2002г
-
Габриелян О. С. Задачи по химии и способы их решения. 8-9 классы / О.С. Габриелян, П. В. Решетов, И.Г. Остороумов. - М.: Дрофа, 2004.-160.
-
Девяткин В. В. Химия для любознательных или о чем не узнаешь на уроке / В. В. Девяткин, Ю. М. Ляхова. - Ярославль: Академия развития, 2000. - 239.
-
Енякова Т. М. Внеклассная работа по химии. - М.: Дрофа, 2004.
-
Е.А. Еремин, Н.Е. Кузьменко «Справочник школьника по химии 8-11 класс, М, «Дрофа», 2000 г
-
Ольгин О. А. Опыты без взрывов. - М.: Химия, 1986. - 192.
-
Пиркулиев Н.Ш. Олимпиадные задачи по химии. Типы задач и методы их решения. - М.: Самообразование, 2000. - 160 с.
-
Сборник задач Всероссийских олимпиад по химии / В. В. Лунин. - М.: Издательство «Экзамен», 2005. - 480 с.
-
Чернобельская Г. М. Введение в химию / Г. М. Чернобельская, А. И. Дементьев. - М.: Владос, 2005. - 253.
-
- дистанционная олимпиада школьников, задания и ответы.
-
- полезные советы, эффектные опыты, химические новости, виртуальный репетитор.
-
- олимпиады по химии, задачи и задания олимпиад по химии различных лет (с ответами и решениями, и без ответов).
-
http://www.fipi.ru/ Отрытый банк заданий ЕГЭ